Combining AI and computational science for better, faster, energy efficient predictionson April 8, 2022 at 12:19 pm

Predicting how climate and the environment will change over time or how air flows over an aircraft are problems too complex even for the most powerful supercomputers to solve. Scientists rely on models to fill in the gap between what they can simulate and what they need to predict. But, as every meteorologist knows, models often rely on partial or even faulty information which may lead to bad predictions. Predicting how climate and the environment will change over time or how air flows over an aircraft are problems too complex even for the most powerful supercomputers to solve. Scientists rely on models to fill in the gap between what they can simulate and what they need to predict. But, as every meteorologist knows, models often rely on partial or even faulty information which may lead to bad predictions. 

Solar nanowire-nanotube filter offers easy access to clean drinking water

Even today, clean water is a privilege for many people around the world. According to the World Health Organization (WHO), at least 1.8 billion people consume water contaminated with feces, and by 2040, a large portion of the world will endure water stress because of insufficient resources of drinking water. Meanwhile, according to the United Nations Children’s Fund (UNICEF), around 1,800 children die every day from diarrhea because of unsafe water supply, which causes diseases like cholera.Even today, clean water is a privilege for many people around the world. According to the World Health Organization (WHO), at least 1.8 billion people consume water contaminated with feces, and by 2040, a large portion of the world will endure water stress because of insufficient resources of drinking water. Meanwhile, according to the United Nations Children’s Fund (UNICEF), around 1,800 children die every day from diarrhea because of unsafe water supply, which causes diseases like cholera.

A bright future: Seeking a third generation of better-performing solar cells

For a greener and more sustainable economy, building better and more powerful solar cells is a key research goal within the clean energy sector. But, in a typical single-junction solar cell, performance is capped at what is called the Shockley–Queisser limit (a theoretical limit for the maximum efficiency that a solar cell can reach). Efficiency determines how much of the light energy (photons) absorbed by the solar cell can be converted into usable electric current. The Shockley–Queisser limit puts the maximum possible efficiency at 33.7 percent for semiconductor-based solar cells.For a greener and more sustainable economy, building better and more powerful solar cells is a key research goal within the clean energy sector. But, in a typical single-junction solar cell, performance is capped at what is called the Shockley–Queisser limit (a theoretical limit for the maximum efficiency that a solar cell can reach). Efficiency determines how much of the light energy (photons) absorbed by the solar cell can be converted into usable electric current. The Shockley–Queisser limit puts the maximum possible efficiency at 33.7 percent for semiconductor-based solar cells.

Hirebucket

FREE
VIEW