Until recently, 3D surface reconstruction has been a relatively slow, painstaking process involving significant trial and error and manual input. But what if you could take a video of an object or scene with your smartphone and turn it into an accurate, detailed model, the way a master sculptor creates masterpieces from marble or clay? Its creators claim that the aptly named Neuralangelo does just that through the power of neural networks—and with submillimeter accuracy.Until recently, 3D surface reconstruction has been a relatively slow, painstaking process involving significant trial and error and manual input. But what if you could take a video of an object or scene with your smartphone and turn it into an accurate, detailed model, the way a master sculptor creates masterpieces from marble or clay? Its creators claim that the aptly named Neuralangelo does just that through the power of neural networks—and with submillimeter accuracy.[#item_full_content]

The world witnessed a monumental face-off between human intelligence and artificial intelligence in March 2016. The computer program AlphaGo honed its skills from a substantial database and emerged victorious against a human opponent in Go, a game renowned for its complexity in calculating countless possible moves.The world witnessed a monumental face-off between human intelligence and artificial intelligence in March 2016. The computer program AlphaGo honed its skills from a substantial database and emerged victorious against a human opponent in Go, a game renowned for its complexity in calculating countless possible moves.[#item_full_content]

When looking for a new type of book, movie, or restaurant, your search may suggest a title or venue you’ve already purchased or experienced. This is because the artificial intelligence tools many companies rely on push users into a “filter bubble,” resulting in recommendations identical, or very similar to, what has been previously purchased.When looking for a new type of book, movie, or restaurant, your search may suggest a title or venue you’ve already purchased or experienced. This is because the artificial intelligence tools many companies rely on push users into a “filter bubble,” resulting in recommendations identical, or very similar to, what has been previously purchased.[#item_full_content]

Green screen technology has been around nearly a century. Some 45 million moviegoers were mesmerized by the special effects of “The Wizard of Oz” when it hit theaters in 1939. The magical scenes in Emerald City were the first to film actors in front of a green screen that later would be replaced with footage of fantastical scenes recorded at a different time and place.Green screen technology has been around nearly a century. Some 45 million moviegoers were mesmerized by the special effects of “The Wizard of Oz” when it hit theaters in 1939. The magical scenes in Emerald City were the first to film actors in front of a green screen that later would be replaced with footage of fantastical scenes recorded at a different time and place.[#item_full_content]

Setting its sights on evolving graphics processing units in a growing universe of generative AI, Intel announced the release of several papers outlining efforts it is pursuing in what observers say is a multibillion-dollar opportunity in coming years for the semiconductor chip giant.Setting its sights on evolving graphics processing units in a growing universe of generative AI, Intel announced the release of several papers outlining efforts it is pursuing in what observers say is a multibillion-dollar opportunity in coming years for the semiconductor chip giant.[#item_full_content]

The public release of AI text generators, such as ChatGPT, has caused an enormous stir among both those who herald the technology as a great leap forward in communication as well as those who prophesy the technology’s dire effects. However, AI-generated text is notoriously buggy, and human evaluation remains the gold-standard in ensuring accuracy, especially when it comes to applications such as generating long-form summaries of complex texts. And yet, there are no accepted standards for human evaluation of long-form summaries, which means that even the gold-standard is suspect.The public release of AI text generators, such as ChatGPT, has caused an enormous stir among both those who herald the technology as a great leap forward in communication as well as those who prophesy the technology’s dire effects. However, AI-generated text is notoriously buggy, and human evaluation remains the gold-standard in ensuring accuracy, especially when it comes to applications such as generating long-form summaries of complex texts. And yet, there are no accepted standards for human evaluation of long-form summaries, which means that even the gold-standard is suspect.[#item_full_content]

Reservoir computing is a promising computational framework based on recurrent neural networks (RNNs), which essentially maps input data onto a high-dimensional computational space, keeping some parameters of artificial neural networks (ANNs) fixed while updating others. This framework could help to improve the performance of machine learning algorithms, while also reducing the amount of data required to adequately train them.Reservoir computing is a promising computational framework based on recurrent neural networks (RNNs), which essentially maps input data onto a high-dimensional computational space, keeping some parameters of artificial neural networks (ANNs) fixed while updating others. This framework could help to improve the performance of machine learning algorithms, while also reducing the amount of data required to adequately train them.[#item_full_content]

From cameras to self-driving cars, many of today’s technologies depend on artificial intelligence to extract meaning from visual information. Today’s AI technology has artificial neural networks at its core, and most of the time we can trust these AI computer vision systems to see things the way we do—but sometimes they falter. According to MIT and IBM research scientists, one way to improve computer vision is to instruct the artificial neural networks that they rely on to deliberately mimic the way the brain’s biological neural network processes visual images.From cameras to self-driving cars, many of today’s technologies depend on artificial intelligence to extract meaning from visual information. Today’s AI technology has artificial neural networks at its core, and most of the time we can trust these AI computer vision systems to see things the way we do—but sometimes they falter. According to MIT and IBM research scientists, one way to improve computer vision is to instruct the artificial neural networks that they rely on to deliberately mimic the way the brain’s biological neural network processes visual images.[#item_full_content]

In 1611, Johannes Kepler—known for his laws of planetary motion—offered a solution to the question concerning the densest possible way to arrange equal-sized spheres. The famed astronomer took on this problem when asked how to stack cannonballs so as to take up the least amount of space. Kepler concluded that the best configuration is a so-called face-centered cubic lattice—an approach commonly used in grocery stores for displaying oranges: Every cannonball should rest in the cavity left by the four cannonballs (lined up in a tight, two-by-two square) lying directly below it. This was merely a conjecture, however, that was not proven until almost 400 years later by a University of Michigan mathematician.In 1611, Johannes Kepler—known for his laws of planetary motion—offered a solution to the question concerning the densest possible way to arrange equal-sized spheres. The famed astronomer took on this problem when asked how to stack cannonballs so as to take up the least amount of space. Kepler concluded that the best configuration is a so-called face-centered cubic lattice—an approach commonly used in grocery stores for displaying oranges: Every cannonball should rest in the cavity left by the four cannonballs (lined up in a tight, two-by-two square) lying directly below it. This was merely a conjecture, however, that was not proven until almost 400 years later by a University of Michigan mathematician.[#item_full_content]

Hirebucket

FREE
VIEW