By Kaitlin Sullivan, a freelance journalist based in Colorado. She has a master’s in health and science reporting from the Craig Newmark Graduate School of Journalism at CUNY.

Storm surge from Hurricane Idalia along Bayshore Boulevard, Tampa, Florida. Tampa General Hospital is the yellow building across the channel, August 30, 2023. Photo: Andrew Heneen/CC BY 4.0 DEED

In 2023, hospitals in Florida, Brooklyn, and Los Angeles shut down. Some evacuated patients in preparation for hurricanes feeding off of warming coastal waters, others were forced to close after historic rainfall cut power to a city of nearly four million people. On the other side of the globe, floods and landslides shuttered 12 health care facilities in five provinces in southern Thailand.

Which is why in December 2023, delegates from all 199 countries of the United Nations met in Dubai to attend the first-ever Health Day at a Conference of Parties (COP) summit. The COP28 meeting highlighted the fact that the climate crisis is also a health crisis.

Health care systems around the world are already being strained by natural disasters and heatwaves, something experts predict will worsen in the coming decades.

For example, Pakistan’s devastating floods in 2022 impacted an estimated 1,460+ health care facilities, about 10  percent of the country’s total. The following weeks saw outbreaks of both water-borne and vector-borne infectious diseases, adding to the burden thrust upon the already weakened health care system.

Summer 2023 was also the hottest on record, marked by deadly heat waves and wildfires that tore through forests, seas, and cities.

“The northern hemisphere just had a summer of extremes — with repeated heat waves fueling devastating wildfires, harming health, disrupting daily lives and wreaking a lasting toll on the environment,” World Meteorological Organization Secretary-General Petteri Taalas said in a statement.

In Arizona, the extreme heat put pressure on power grids and spurred an influx of people in need of medical care for heat stress. Heat-related emergency room visits rose by 50 percent on days that reached a wet-bulb temperature of at least 89.6 degrees Fahrenheit, a 2021 Taiwanese study found. Simply put, wet-bulb temperatures take into account both heat and humidity, which makes it more difficult for sweat to evaporate and therefore harder for people to cool themselves.

Over the past five years, the number of heatstroke patients admitted to hospitals in Pakistan during the summer months increased around 20 percent annually, the medical director of a Pakistani hospital told The Washington Post. In that time, Pakistan endured three of its five hottest summers.

The recent hospital closures in Pakistan, Thailand, and the United States are representative of a larger trend that’s already in motion. According to the World Health Organization, 3.6 billion people already live in areas highly susceptible to climate change. A recent paper led by Renee Salas, published in Nature Medicine, used the United States, a country with one of the most robust health systems in the world, to illustrate how climate change will impact both the number of people needing medical care as well as hospitals’ ability to carry out that care.

From 2011 to 2016, floods, storms, and hurricanes caused over $1 billion in damages across the U.S. Using Medicare data from that timeframe, Salas and colleagues found that in the week following an extreme weather event, emergency room visits and deaths rose between 1.2 percent and 1.4 percent, and deaths remained elevated for six weeks following the event.

The researchers also found that mortality rates were two to four times higher in counties that experienced the greatest economic losses following a disaster. Moreover, these counties also had higher emergency department use, highlighting how damage to infrastructure, such as power outages and thwarted transportation, can compound the toll climate change takes on human health.

Future Threats

Between 2030 and 2050, climate change-driven malnutrition, malaria, diarrhea, and heat stress are expected to cause 250,000 additional deaths per year. And climate change is expected to worsen more than half of known human pathogenic diseases, expanding the range of fungal infections and increasing the risk of viral pathogens and mosquito-borne diseases.

At the same time, health care infrastructure will face increasing strain from the impacts of extreme weather –– power outages, flooding, damage to buildings –– as well as from the mounting health issues, infections, and diseases exacerbated by climate change.

A December 2023 report published by XDI (Cross Dependency Initiative), an Australian climate risk data company, estimated that by the end of this century, one in twelve hospitals worldwide could be at risk of total or partial shutdown due to extreme weather.

The researchers used two versions of the Representative Concentration Pathways (RCPs) to compare the projected risks to hospital infrastructure in two different scenarios of a global temperature rise of about 1.8˚C vs. 4.3˚C by the year 2100. The researchers also examined the increase in climate risk to 200,216 hospitals around the globe from flooding, fires, and cyclones. At worst, fires can completely destroy buildings, but they also create dangerous levels of air pollution and smoke that can land more patients in the hospital and strain those already being treated. Flooding and cyclones can render hospitals unusable.

In both low- and high-emissions scenarios, a significant number of the study hospitals would be at high risk of total or partial shutdown by 2100: 12,011 (6 percent) in the lower emissions scenario, compared to 16,245 (8 percent) hospitals in the high-emissions scenario. Under the worst case scenario, 10,744 hospitals –– more than 5 percent of those included in the analysis –– would already be high risk by 2050. The lower risk scenario doesn’t project a much better outcome, estimating that 10,043 hospitals would still be high risk in 2050.

Figure 1: XDI projections for the increase in risk of damage to hospitals due to extreme weather under a high-emission (RCP 8.5) climate scenario and a low-emission (RCP 2.6) climate scenario.

Human-driven climate change has already increased damage to hospitals by 41 percent between 1990 and 2020. Nowhere is this phenomenon more prevalent than in Southeast Asia, which has seen a 67 percent increase in risk of damage since 1990. On this trajectory, one in five hospitals in Southeast Asia would be at high risk for climate-driven damage by the end of the century. More than 70 percent of these hospitals would be in low-to-middle-income nations.

The XDI report estimated more than 5,800 hospitals in South Asia, an area that includes India, the world’s most populous country, would be at high risk for shutting down under the 4.3˚C increase scenario. More than half of hospitals in the Central African Republic and more than one-quarter of hospitals in the Philippines and Nepal would face the same fate.

Contrary to popular belief, high-income nations are also not immune. The model projected that North America would experience the biggest increase in risk of weather-driven damage to hospital infrastructure by 2100, with a more than five-fold increase compared to 2020.

If world leaders can limit warming to 1.8˚C and rapidly phase out fossil fuels starting now, the data suggests the risk of damage to hospitals would be cut in half by the end of the century compared to the high-emissions scenario.

How Hospitals Can Prepare

Hospitals need to brace for a future with more demand for care and a higher risk of infrastructure being damaged by extreme weather.

In a February 2024 review published in International Journal of Health Planning and Management, Yvonne Zurynski led a team of researchers that used data from 60 studies published in 2022 and 2023 to identify ways in which the healthcare system can build resilience in the midst of a changing climate. Forty-four of the studies reviewed focused on the strains climate change puts on health care workforces, most commonly hospital staff. The same number of studies also reported how hospitals plan to respond to a climate-related event, most commonly hurricanes, followed by floods and wildfires. The plans included how hospitals could minimize staff burnout and safely evacuate patients if needed.

The team found six key ways hospitals and health workers can adapt to the health system impacts of climate change: training/skill development, workforce capacity planning, interdisciplinary collaboration, role flexibility, role incentivization, and psychological support.

For training and skills development, the studies agreed that all health care workers should be trained to recognize and treat climate-specific health conditions, including wildfire smoke exposure, heat stroke, and water-borne diseases.

Infrastructure must be designed to be more climate resilient. Many facilities are susceptible to power outages or are not equipped to cope with wildfire smoke or the loss of running water. Being prepared also includes training staff in techniques to evacuate patients from hospitals that can no longer run due to a climate change-fueled extreme weather event.

Health care systems also need to be flexible and respond to climate-driven health crises as they emerge. This approach encompasses workforce capacity planning, interdisciplinary collaboration, and role flexibility. In practice, such an approach may include hiring care staff with multiple specialties, to ensure health care teams can be flexible when unexpected pressures arise.

Health care systems can also incentivize work during high-pressure events. This strategy could take a physical form, such as compensating staff extra for working during a climate response. It could also be intrinsic. Staff may feel it is their duty to work during a climate-related disaster, feeling a duty to both their profession and the people they serve, the authors write. Both are examples of role incentivization.

To make this approach sustainable, it is paramount that health systems have a network in place to care for their employees’ mental health. Providing psychological support was a recurring theme in the studies Zurynski and her team reviewed. Hospitals could have mental health professionals on call during or after climate events that put pressure on health systems, or recalculate shifts during a disaster to ensure every employee has adequate time to recuperate. A volunteer or reserve workforce that is pulled into action during or following an extreme weather event or infectious disease outbreak could also alleviate some of the stress on health care workers during these times.

Making significant changes to the way hospitals operate may seem daunting, but facilities can start small in their adaptations and create solutions unique to their needs. An example of this approach can be found in a region already steeply impacted by climate change.

About half of all hospitals in Vietnam do not have a reliable source of water, meaning patients often have to bring their own. Faced with this major obstacle to care, three rural hospitals in Vietnam were chosen for a pilot project to make them more climate resilient, starting with water. Water availability in all three hospitals is already a significant challenge due to droughts, floods, and creeping saltwater intrusion.

Despite their water challenges, all three institutions in the pilot found unique ways to guard against existing and growing climate threats through community engagement, installation of rainwater catchment and storage systems, saline filtration, and better infrastructure to capture nearby streamflows.

Climate change impacts are already pushing health care systems into higher levels of risk, and that trend will continue. It’s vital that hospital leadership teams begin shaping plans for climate resiliency, both related to infrastructure and personnel, to safeguard health care on a changing planet.

 

Cited Resources:
Alied, M., Salam, A., Sediqi, S. M., Kwaah, P. A., Tran, L., & Huy, N. T. (2023). Disaster after disaster: the outbreak of infectious diseases in Pakistan in the wake of 2022 floods. Annals of medicine and surgery (2012), 86(2), 891–898. https://doi.org/10.1097/MS9.0000000000001597.
Borah, B. F., Meddaugh, P., Fialkowski, V., & Kwit, N. (2024). Using Insurance Claims Data to Estimate Blastomycosis Incidence, Vermont, USA, 2011–2020. Emerging Infectious Diseases, 30(2), 372-375. https://doi.org/10.3201/eid3002.230825.
Cross Dependency Institute. (2023). 2023 XDI Global Hospital Infrastructure Physical Climate Risk Report. XDI Benchmark Series. https://www.preventionweb.net/quick/82047.
He, Y., Liu, W. J., Jia, N., Richardson, S., & Huang, C. (2023). Viral respiratory infections in a rapidly changing climate: the need to prepare for the next pandemic. EBioMedicine, 93, 104593. https://doi.org/10.1016/j.ebiom.2023.104593.
Lung, S. C., Yeh, J. J., & Hwang, J. S. (2021). Selecting Thresholds of Heat-Warning Systems with Substantial Enhancement of Essential Population Health Outcomes for Facilitating Implementation. International journal of environmental research and public health, 18(18), 9506. https://doi.org/10.3390/ijerph18189506.
Mora, C., McKenzie, T., Gaw, I. M., Dean, J. M., von Hammerstein, H., Knudson, T. A., Setter, R. O., Smith, C. Z., Webster, K. M., Patz, J. A., & Franklin, E. C. (2022). Over half of known human pathogenic diseases can be aggravated by climate change. Nature climate change, 12(9), 869–875. https://doi.org/10.1038/s41558-022-01426-1.
Salas, R. N., Burke, L. G., Phelan, J., Wellenius, G. A., Orav, E. J., & Jha, A. K. (2024). Impact of extreme weather events on healthcare utilization and mortality in the United States. Nature medicine, 30(4), 1118–1126. https://doi.org/10.1038/s41591-024-02833-x.
Wang, Y., Zhao, S., Wei, Y., Li, K., Jiang, X., Li, C., Ren, C., Yin, S., Ho, J., Ran, J., Han, L., Zee, B. C., & Chong, K. C. (2023). Impact of climate change on dengue fever epidemics in South and Southeast Asian settings: A modelling study. Infectious Disease Modelling, 8(3), 645–655. https://doi.org/10.1016/j.idm.2023.05.008.
Ye, T., Guo, Y., Chen, G., Yue, X., Xu, R., Coêlho, M. S. Z. S., Saldiva, P. H. N., Zhao, Q., & Li, S. (2021). Risk and burden of hospital admissions associated with wildfire-related PM2·5 in Brazil, 2000-15: a nationwide time-series study. The Lancet. Planetary health, 5(9), e599–e607. https://doi.org/10.1016/S2542-5196(21)00173-X.
Zurynski, Y., Fisher, G., Wijekulasuriya, S., Leask, E., Dharmayani, P. N. A., Ellis, L. A., Smith, C. L., & Braithwaite, J. (2024). Bolstering health systems to cope with the impacts of climate change events: A review of the evidence on workforce planning, upskilling, and capacity building. The International journal of health planning and management, 10.1002/hpm.3769. Advance online publication. https://doi.org/10.1002/hpm.3769.

The post Before The Next Storm: Building Health Care Resilience appeared first on Energy Innovation: Policy and Technology.

By Kaitlin Sullivan, a freelance journalist based in Colorado. She has a master’s in health and science reporting from the Craig Newmark Graduate School of Journalism at CUNY. In 2023, hospitals in Florida, Brooklyn, and Los Angeles shut down. Some…
The post Before The Next Storm: Building Health Care Resilience appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

By Rebecca Rasch, Social Scientist at Aspen Global Change Institute

Electric vehicle charging by Zaptec via Unsplash.

While electric vehicles (EVs) are not a panacea for reducing emissions from the transportation sector, widespread adoption can be a significant step toward meeting CO2 reduction targets. In a recent study of EV adoption in China, the authors estimate that even a one percent increase in a city’s EV sales can reduce local net CO2 emissions in both the city itself and a nearby city. 

These benefits are especially salient in environmental justice (EJ) communities, where people are disproportionately burdened by environmental hazards such as smog from car exhaust, leading to higher rates of childhood and adult asthma and cardiovascular problems.

Overcoming cost barriers

While lack of charging infrastructure is a key barrier to making the EV transition across the socioeconomic divide, low-income consumers in particular are grappling with two additional barriers: vehicle purchase cost and the risk of high maintenance and repair costs. The good news is that in the U.S., policy interventions and subsidies are poised to address upfront vehicle costs. Clean vehicle tax credits, as part of the Inflation Reduction Act, provide purchasers of used models with a maximum tax credit of up to $4,000 or 30 percent off the cost of the preowned vehicle.

The potential for high repair costs, however, is more difficult to tackle. A 2023 Consumer Reports poll found that EVs are less reliable overall, compared to combustion engine vehicles. In a recent article in Business Insider, the authors note that Hertz is scaling back its EV rental fleet due to high repair costs. If an EV battery is damaged in a collision, it could cost between $5,000 and $15,000 to replace – which is especially problematic for low-income consumers. In a recent article published in the Journal of Planning Education and Research, study authors Klein, Basu, and Smart found that high repair and maintenance costs are the main reason that low-income households transition into and out of car ownership. They tend to buy used cars and, when their cars break down, they are unable to pay for repairs. Among those surveyed who lost access to their car (1,103 of 3,358 total respondents), 32 percent experienced job loss as a result, and 58 percent reported that job opportunities decreased.

Impacts on health and well-being

Low-income households surveyed who had lost access to a car noted, too, that it impacted health care and caregiving responsibilities because they no longer had a car to access medical care or to bring children to school.

In addition, 52 percent of those surveyed reported a negative effect on their quality of life. Interestingly, for a minority, the loss of a car improved their quality of life, as they were relieved to be free of the financial burden. However, as Klein and colleagues found, 78 percent of survey respondents agreed that the vehicle purchase was “worth it.”

Figure 1. Klein et al.’s (2023) findings of the impacts of car loss and car gain on low-income households. Source: Klein et al., 2023.

Advancing equitable policy solutions

So what are equitable policy solutions that will set society on a trajectory to reduce both transportation sector emissions and asthma in EJ communities, without overburdening the most vulnerable with the risk of losing their cars because of high repair costs?

While EV subsidies are a good way to encourage low-income households to enter the EV market, policy makers must also consider the full lifecycle costs of vehicle ownership and the risk of the most vulnerable households having to transition out of car ownership if costly maintenance and repairs are required. Strategic investments in EV adoption by institutions that can afford to incur that risk is one pathway to improving the overall affordability of EVs in the long term.

Investments in EV government fleets and public transportation are a win-win for low-income communities

At the community level, investing in EV heavy-duty fleets (school buses, delivery vehicles) makes sense right now. The overall costs of EVs, including operation, service, and maintenance over the life of the vehicles, is estimated to be on par with or lower than combustion engine vehicles, especially when the high cost of diesel fuel is factored in. Subsidies and policies that facilitate the transition to cleaner heavy-duty vehicles are especially beneficial to EJ communities, as the link between diesel emissions and higher asthma rates for Black and Latino children in communities overburdened by pollution is well-established (AAFA 2005; Weir 2002).

One great example of a subsidy targeted at the community level is Clean School Bus Rebates (CSB), an Environmental Protection Agency program funded through the Bipartisan Infrastructure Law. It provides subsidies to school bus fleet owners to replace existing fleets with clean and zero-emission vehicles, as well as subsidies for EV charging infrastructure. For the 2023 application, the EPA estimates allocating $500 million in total funding.

EVs improve environmental quality

A common criticism of electric vehicles is the associated rise in emissions for the electricity generation required to charge the vehicles.

In an article in Heliyon documenting the impact of EVs on the environment and carbon emissions, Xiaolei Zhao and colleagues found that when internal combustion engine vehicles are replaced by EVs, there are significant reductions in emissions, even when 50 percent of the electricity is generated by fossil fuels. T The authors demonstrate that the net emissions impact of EV adoption is likely negative, as CO2 reductions from a transition to EVs would outstrip the increase in emissions due to increased consumption of electricity. Emissions reductions are expected to come from both the direct substitution of internal combustion engines with EVs, and EV manufacturer-led increases in technological innovation in the transportation sector,, which are expected to reduce traffic congestion and associated emissions.

One important caveat is the moderating effect of the energy structure. Expanded EV adoption could spur increases in the carbon emissions of cities that are wholly reliant on fossil fuel energy generation, though this increase is likely temporary as grids shift to include more renewable energy sources. From an environmental quality perspective, it still makes sense for environmental justice communities to invest in EV fleets, which will provide direct air quality benefits today, deliver potential carbon reduction benefits in the near future, and advance equity in access to EV charging.

Thanks to hefty government subsidies and consumer demand, trends suggest that in the next few years,  , reliability will improve, and charging networks will scale up and become more equally distributed across low-income neighborhoods.  They are also well on their way to becoming a smart choice for low-income consumers in the coming decade as vehicle affordability improves.

Featured Research:
Klein, Nicholas J., Rounaq Basu, and Michael J. Smart. 2023. “Transitions into and out of Car Ownership among Low-Income Households in the United States.” Journal of Planning Education and Research 0739456X2311637. doi: 10.1177/0739456X231163755.Zhao, Xiaolei, Hui Hu, Hongjie Yuan, and Xin Chu. 2023. “How Does Adoption of Electric Vehicles Reduce Carbon Emissions? Evidence from China.” Heliyon 9(9):e20296. doi: 10.1016/j.heliyon.2023.e20296.
Linked News Articles:
https://www.consumerreports.org/cars/car-reliability-owner-satisfaction/electric-vehicles-are-less-reliable-than-conventional-cars-a1047214174/ Accessed Jan 22 2024.
https://www.businessinsider.com/electric-car-service-maintenance-car-buyers-tips-dealers-cost-2023-2
See https://www.epa.gov/sciencematters/linking-air-pollution-and-heart-disease
https://www.fueleconomy.gov/feg/taxused.shtml

The post Reducing The Risk Of Investing In Electric Vehicles For Low-Income Consumers appeared first on Energy Innovation: Policy and Technology.

By Rebecca Rasch, Social Scientist at Aspen Global Change Institute While electric vehicles (EVs) are not a panacea for reducing emissions from the transportation sector, widespread adoption can be a significant step toward meeting CO2 reduction targets. In a recent…
The post Reducing The Risk Of Investing In Electric Vehicles For Low-Income Consumers appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

By Asa DeHaan, Research Technician at Aspen Global Change Institute and Elise Osenga, Community Science Manager at Aspen Global Change Institute.

A root-dense sample of wet meadow soil. Photo: Asa DeHaan/AGCI

The Unseen World

Beneath the ground, a diverse ecosystem teems with microscopic life. The soil microbiome is a complex life system dominated by bacteria, fungi, viruses, and numerous other microorganisms. This cast of players performs many functions from nitrogen fixation (converting nitrogen from the atmosphere to a form that plants can more readily use for growth) to decomposition to carbon storage. Compared to the volume of science conducted above ground, relatively little is known about this hidden world, but recent research is opening new windows into how microbiomes may shape and be shaped by a changing climate.

The Plant-Microbe Relationship 

The relationship between microbes and plants is particularly complex (Fig. 1) and has direct consequences for agricultural productivity. However, climate change may alter the function and composition of soil microbial communities. Drought is already having widespread impacts on plants and microbiomes, with consequences for agriculture and rangeland productivity around the world. The latest Intergovernmental Panel on Climate Change report found that as the climate changes, many regions experience more frequent and more intense droughts. For many areas, rising temperatures translate into increased water loss from soils and water bodies, changes to patterns and duration of snow cover, and shifts in the timing and intensity of precipitation events (IPCC AR6, Chpt 11). Still in question is how ecosystems, and the microbiomes they are grounded in, will adapt.

Fig 1: Jansson et al. Soil microbiome-plant interactions

Amidst these environmental shifts, researchers are considering the capabilities of plant-microbe interactions to offer a pathway to resilience. In a review of the literature on microbial potential to support successful sustainable agriculture published in the journal Microbes, Antoszewski and colleagues found that microbes can improve plant resilience to environmental stressors. Plants attract “stress microbiomes” through a chemical signal, which allows the plants to adapt to environmental conditions, such as drought, by improving water use efficiency, plant water content, CO2 assimilation rates, chlorophyll content, and plant productivity. Drought affects not only plant growth and yield but also the composition and functionality of the soil microbiome. The presence of drought-resistant bacteria increases under drought conditions. Deeper understanding of the symbiosis between plants and stress microbiomes in the soil could illuminate potential strategies for enhancing plant survival in drought-prone areas amid climate change.

However, a new greenhouse experiment by University of Illinois researchers Ricks and Yannarell indicates that some soil microbial communities may adapt to drought independent of plant signals. The researchers observed plant health under contrasting conditions of water availability. Using a soil mix that included field samples from a local restored tallgrass prairie, they created pots that were either planted with mustard plants (Abidopsis thaliana or Brassica rapa) or left as bare soil. Over the course of three plant generations, different groups of pots received different watering regimes, with some pots experiencing simulated drought. For a fourth and final generation of plants, the researchers compared how well plants performed based on their watering history vs. the watering history of the soils in which they were planted.  They found that soil microbes appeared to adapt to their environments (either wet or dry) regardless of whether or not their associated host plants were present at the time of simulated drought. Further, plants introduced into formerly unplanted, drought-exposed soils performed better under future water-limited conditions than plants grown in soils whose microbes had not previously undergone simulated drought. While Ricks and Yannarell acknowledge that their experiment focuses on only a small subset of microbe-host plant interactions, the study opens new questions about the potential for plant-independent microbial adaptation to drought and outcomes for plant survival in regions facing a drier future.

Recent research from J.M. Lavallee and colleagues published in Nature Communications found that land management practices may also play a role in determining how drought influences soil microbial communities. The study was carried out across a series of mesotrophic grasslands (meadows used for haymaking and pasture) in the United Kingdom and found that intensive grassland management, characterized by regular application of fertilizer and lime, favors drought-resistant soil microbial bacteria. By contrast, the same intensive management practices had the opposite effect on fungal taxa, leading drought-sensitive fungi to comprise a larger portion of the overall fungi community in the soil. This differential response between bacteria and fungi under varying management intensities suggests that intensive management may favor bacterial dominance over fungi following drought. Because bacteria and fungi perform different (although sometimes overlapping) functions in the soil, shifts in the dominant composition of the community could have implications for plant species composition, ecosystem drought resilience, and even carbon storage.

Players In The Carbon Cycle

Simultaneous research on the carbon cycle suggests that microbial communities may be more important than previously understood when it comes to estimating alterations to the climate. One such study by Heidi-Jayne Hawkins and colleagues looked at mycorrhizal fungi, commonly found across many landscapes. Through a symbiotic relationship, the soil fungi help certain plants absorb water and nutrients from the soil, receiving carbohydrates in return. During this process, the fungi transport carbon to deep soil layers, contributing to long-term carbon storage (Fig. 2).

When mycelium, the fungal threads, die, they become “necromass,” an organic material that helps to form and stabilize soil aggregates, which protect soils from erosion and decomposition and stabilize soil organic carbon. Looking at 194 datasets to estimate the total carbon storage pool associated with mycorrhizae, Hawkins and colleagues estimated that plant hosts allocate (at least temporarily) around 13.12 metric gigatons of carbon dioxide a year to soil fungi around the globe. This volume, equal to roughly a third of from fossil fuels, suggests that mycorrhizal fungi contribute more to the building of soil organic carbon pools than either living fungal biomass or plant litter. The researchers assert that a quantitative assessment of carbon storage resulting from mycorrhizal-plant interactions is critical to more fully understanding carbon fluxes and better modeling future rates of climate change.

Figure 2: Illustration of the mechanisms by which mycorrhizal fungi help gain and lose carbon in soil. (Hawkins et al, 2023)

A current research review by Mason et al. similarly calls for more attention to the role of microbiomes by looking at how soil amendments and inoculations impact microbiomes and carbon storage. The review discusses both fungi and bacteria, noting how different microbes are intertwined with carbon cycle processes. While the relationship of soil fungi in carbon storage has been studied, the role of soil-bound bacteria has not been examined as closely, even though some bacteria appear to play a similar role as fungi in carbon storage. For example, one group of bacteria, Actinomycetes, can produce a filamentous structure that can store carbon underground. These bacteria can contribute to soil biomass and necromass and are capable of surviving extreme conditions. However, much remains unknown about soil bacterial capacities in building carbon sequestration.

Climate Resilience And The Future

These recent explorations into the soil microbiome uncover a vast, intricate world beneath our feet, where microorganisms play vital and rapidly changing roles in agriculture, climate resilience, and carbon sequestration. As climate change alters our landscapes, studies such as those by Antoszewski et al., Ricks and Yannarell, Hawkins et al., and Lavallee et al. shed light on the adaptability of microbial communities and their potential to mitigate the impacts of climate change or even climate change itself. But even as this current boom in research uncovers the complex network of interdependence humans rely on from the ground up, it also reveals many areas still ripe for further investigation.

Featured Research

Lavallee, J.M., Chomel, M., Alvarez Segura, N. et al. Land management shapes drought responses of dominant soil microbial taxa across grasslands. Nat Commun 15, 29 (2024). https://doi.org/10.1038/s41467-023-43864-1

Mason, A. R. G., Salomon, M. J., Lowe, A. J., & Cavagnaro, T. R. (2023). Microbial solutions to soil carbon sequestration. Journal of Cleaner Production, 417, 137993. https://doi.org/10.1016/j.jclepro.2023.137993

Hawkins, H.-J., Cargill, R. I. M., Van Nuland, M. E., Hagen, S. C., Field, K. J., Sheldrake, M., Soudzilovskaia, N. A., & Kiers, E. T. (2023). Mycorrhizal mycelium as a global carbon pool. Current Biology, 33(11), R560-R573. https://doi.org/10.1016/j.cub.2023.02.027

Ricks, K.D., & Yannarell, A.C. (2023). Soil moisture incidentally selects for microbes that facilitate locally adaptive plant response. Proceedings of the Royal Society B 290 29020230469. https://doi.org/10.1098/rspb.2023.0469

The post What Small But Mighty: The Role Of Microbes In A Changing Climate appeared first on Energy Innovation: Policy and Technology.

By Asa DeHaan, Research Technician at Aspen Global Change Institute and Elise Osenga, Community Science Manager at Aspen Global Change Institute. The Unseen World Beneath the ground, a diverse ecosystem teems with microscopic life. The soil microbiome is a complex…
The post What Small But Mighty: The Role Of Microbes In A Changing Climate appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

By Emily Jack-Scott, Program Director at Aspen Global Change Institute.

Man turning down thermostat by Getty Images via Canva Pro

Global leaders met in Davos earlier in January to engage in cross-cutting discussions about the world’s most pressing challenges and to debate the merits of various solutions. After another year of climate extremes, it’s little surprise that abnormal weather and climate change are a central focus of the summit. 

Structural change through policies and governance is necessary to solve the climate crisis at the speed and scale required. But high level decision-makers are not the only ones with the power to reduce emissions. The choices that we all make every day as individuals are also critical. 

But often, we feel at a loss when it comes to taking individual action. What can I do? What difference can I possibly make? Recent research sheds light on the common barriers we face when making choices that can reduce carbon emissions and the many ways one person really can make a difference. 

A disconnect between concern and action

Over 70 percent of Americans describe themselves as cautious, concerned, or alarmed about climate change. But many people experience a disconnect between their individual worries and their confidence to take action. A recent analysis led by Carl Latkin in the Journal of Prevention details the most common barriers that concerned Americans report when it comes to walking the talk of climate activism. 

Even when survey respondents described climate change as very or extremely important to them, less than a third reported signing petitions (32 percent), contacting elected officials (12 percent), and donating money to (30 percent) or volunteering with (9 percent) organizations working to reduce climate change. The only climate action that the majority (69 percent) of very concerned citizens reported was voting for candidates who support mitigation measures. 

Some top reasons people report for not taking action on climate change include not being asked (50 percent), not knowing how to get involved (50 percent), and viewing activities like letter writing as unappealing (50 percent). Less common reasons include not wanting to be asked to donate (40 percent), being too busy (39 percent), not being encouraged to act (38 percent), and feeling like what they are capable of doing won’t make a difference (31 percent). 

But the number one reason that the majority of concerned Americans gave for their lack of involvement was that they felt undertrained and that someone else could do it better (57 percent). 

What one person can do

A newly published review in the journal One Earth by authors Sam Hampton and Lorraine Whitmash beautifully illustrates the many direct and indirect ways we can each take climate action (Figure 1). Their holistic view encourages us to imagine what climate action can look like in our daily lives and can help us break through the feeling that “someone else can do this better than me.”

 

Figure 1. “Food, energy, transport, and shopping represent direct emissions-related choices and constitute the majority of individual carbon footprints. Influence and citizenship are important, indirect domains of choice that have a bearing on climate change. Examples of key choices within each are represented.” Source: Hampton and Whitmarsh, 2024.

 

The authors break down climate action into six categories: food, energy in the home, transport, shopping, influence, and citizenship. We each have the power to make wise choices in each of these domains, though a combination of influences also shape our decisions, including our values, cultural norms, level of education, peer pressure, strength of our social networks, financial well-being, access to green infrastructure, and our freedom to engage in political action.

When it comes to our diets, for example, we may know that reducing or eliminating meat (especially red meat) will help reduce our emissions, but whether we choose a more plant-forward diet is heavily influenced by our cultural traditions, upbringing, and the availability of vegetarian options at nearby restaurants or friends and families’ houses.

Similarly, when it comes to changing our home energy consumption by investing in efficiency improvements or renewable sources, our income levels and access to information about tax incentives have a big influence on our choices.

But herein lies the real power of individual action. When we can make choices that reduce emissions and dare to talk about those choices, we not only directly reduce our emissions, but indirectly influence others.

But what difference does it make?

We each make choices every day that can reduce emissions, and some have a bigger impact than we may realize. Often the most impactful choices depend on our lifestyle. As more people choose to substitute white meat or seafood for red meat, switch to electrical vehicles and heat pumps, take public transportation, or shop for second-hand goods, our choices increasingly become a new norm.

And when we talk with people within and beyond our social circles about why we made those choices, they can become an influence in their own right. These casual climate conversations can help build  much-needed climate literacy because there is a stark disconnect for most people between actions they perceive as climate-friendly and what actually reduces significant emissions (Figure 2).

Figure 2. Survey respondents overestimated the significance of recycling and replacing incandescent light bulbs on reducing greenhouse gas emissions. Source: Ipsos 2021, figure adapted in Hampton and Whitmarsh 2024.

A 2021 Ipsos poll found that nearly 60 percent of respondents thought recycling was the most effective way to reduce emissions in high-income countries. In actuality, the emissions savings from avoiding one long distance flight or buying renewable energy is eight times greater than recycling. Very few respondents even realized that their dietary choices or decision whether to have children had any significant impact on their carbon footprint.

Our choices in the domains of food, home energy, transport, and shopping translate into the indirect power we wield through influencing friends, family, and neighbors. Normalizing direct actions that reduce emissions inspires our peers and catalyzes political momentum. And while not all of our actions have a direct economic impact, the ones that do send strong market signals to business leaders who will respond to meet demand.

We are not all socially inclined, financially able, or geographically positioned to adopt every climate action in Hampton and Whitmarsh’s diagram (Figure 1). But the direct and indirect impacts of any climate-friendly choices we are able to make have a huge ripple effect in the kinds of dialogues happening among our friends and peers, and among business and government leaders farther away.

 

Featured Research

Hampton, S. and Whitmarsh, L., 2023. Choices for climate action: A review of the multiple roles individuals play. One Earth, 6(9), pp.1157-1172.

Latkin, C., Dayton, L., Bonneau, H., Bhaktaram, A., Ross, J., Pugel, J. and Latshaw, M.W., 2023. Perceived barriers to climate change activism behaviors in the United States among individuals highly concerned about climate change. Journal of Prevention, 44(4), pp.389-407.

The post What Difference Can I Make In The Climate Crisis? appeared first on Energy Innovation: Policy and Technology.

By Emily Jack-Scott, Program Director at Aspen Global Change Institute. Global leaders met in Davos earlier in January to engage in cross-cutting discussions about the world’s most pressing challenges and to debate the merits of various solutions. After another year…
The post What Difference Can I Make In The Climate Crisis? appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

This post is the fourth in a series titled “Real Talk on Reliability,” which will examine the reliability needs of our grid as we move toward 100 percent clean electricity and electrify more end-uses on the path to a climate stable future. It was written by Savannah M. D’Evelyn, a postdoctoral scholar at the University of Washington’s Pacific Northwest Agricultural Safety and Health Center. Other posts in this series covered Rethinking the Reliability of the Grid and the Future of Operational Grid Reliability, and the EPA’s proposed rules on greenhouse gas emissions.

Agricultural worker during wildfire smoke episode. Credit: Sarah Fish, PNASH Center, University of Washington

As climate change accelerates, the frequency and intensity of extreme weather events such as megafires and heatwaves are on the rise. These extremes compromise not only our air quality, but often how a community is able to adapt to such events.

Air quality monitoring networks play a crucial role in enhancing climate resilience by providing communities and policymakers the data they need to understand the relationships between air quality and public health. For instance, public health organizations rely on accurate air quality data to decide when to recommend opening windows at nighttime during a heat event, or conversely, when to keep doors and windows closed to maintain clean air during a wildfire smoke event.

Data must be localized, accurate, continuous, and accessible in these situations to enable early detection of air quality changes and timely responses that can mitigate health risks. Communities across the U.S. are demonstrating more interest in involvement in air quality monitoring efforts to supplement federal and state data and bolster local climate resilience to extremes.

Who is responsible for measuring air quality in the U.S.?

The Clean Air Act (CAA) requires the U.S. Environmental Protection Agency (EPA) to establish National Ambient Air Quality Standards (NAAQS) for six common air pollutants: particulate matter (PM), ozone, lead, carbon monoxide, sulfur dioxide, and nitrogen dioxide. Monitoring these pollutants provides a basis for assessing and regulating air quality, guiding efforts to safeguard public health and the environment. State, tribal, and local air agencies work together to monitor and attain the standards and record extensive data in emissions inventories.

While NAAQS are federally set, individual states are responsible for meeting and maintaining the standards through state implementation plans. Even though the NAAQS and emissions inventories are intentionally set to protect human health on a local scale, public knowledge and understanding of the consequences of exposure air pollution on health and wellbeing is limited (Ramirez et al., 2019; D’Evelyn et al., in press). This knowledge is essential, though, to making daily health decisions and strengthening community climate resilience.

Air quality levels are communicated to the public through the Air Quality Index (AQI). The AQI is a numerical scale that gives an easy read of air quality with colors and corresponding categories ranging from “Good” to “Hazardous,” along with health recommendations to help inform decision making (Figure 1). While many people access air quality information on mobile phone weather apps, AQI information for specific locations can also be found at AirNow.gov, which pools data reported from federal and state-run monitors. If there is not an EPA-regulated air monitor in a specific area, the air quality of the nearest location will be displayed. The EPA’s fire and smoke map is also available on the AirNow site during wildfire season. This map includes additional monitoring sites, information on fire location, and smoke predictions per region.

Figure 1: Air Quality Index (AQI) table from AirNow.gov.

The EPA evaluates all monitors used to assess compliance with the NAAQS as either Federal Reference Method (FRM) or Federal Equivalent Method (FEM) monitors. While FRM and FEM monitors are considered the gold standard, they are often expensive and not accessible to communities that may want more hyper-localized air quality information.

How can communities be more active in air quality monitoring and responses?

In recent years, affordable and easily used monitors have entered the market. Anyone can purchase these monitors, which are often accompanied by online platforms where all data can be publicly viewed. Some communities have turned to these low-cost sensors to build their own local air quality monitoring networks. Along with filling data gaps in federal and state monitoring, local monitoring networks empower communities to own their localized data, foster awareness around air quality and environmental health, and improve worker protections.

A new team in the Colorado Department of Public Health and Environment’s (CDPHE) Air Pollution Control Division has a specific focus on community monitoring. As Amber Eglund from CDPHE’s Education and Community Opportunities team states, “Community air monitoring allows communities to play an active role in identifying, assessing, and understanding the levels of various pollutants in their air. It raises awareness of potential health risks and empowers communities to make informed decisions about their health, advocate for policy change and cleaner technologies, and foster an overall healthier environment.”

Access to additional localized data has proven most beneficial in regions where the monitors are deployed as part of a cohesive network. In the Methow Valley in northcentral Washington, for example, the community organization Clean Air Methow and the University of Washington worked together to identify clean air ambassadors who placed monitors in their homes and actively shared data with the community (Durkin et al., 2020).

In Imperial Valley, California, the community-run IVAN (Identifying Violations Affecting Neighborhoods) network enabled residents to sign up for localized air quality alerts and local public health organizations to tailor more timely and specific educational outreach to neighborhoods experiencing the worst air quality (English et al., 2020). After successful implementation in Imperial, the California Environmental Protection Agency (CalEPA) worked with six additional communities to host local IVAN networks across the state.

Unfortunately, increased access to low-cost sensors has not been equally successful or beneficial to all communities. Researchers have found that across the U.S., PurpleAir sensors tend to be deployed in census tracks that are significantly Whiter and higher-income relative to the national average (deSouza & Kinney, 2021). In California’s Los Angeles County, PurpleAir sensor coverage was shown to be significantly lower in communities with higher Black and Latinx populations (Mullen et al., 2022). As these studies demonstrate, community deployment of monitors without an equity strategy can exacerbate environmental injustices.

In 2022, the U.S. EPA put out a funding call for community organizations and local governments to measure air quality and improve community environmental literacy (EPA, 2022). Across 37 states, 132 projects in environmental justice communities ultimately received $53.4 million to address monitoring disparities.

Air quality monitoring for education and enforcement

Another way communities are getting engaged in local air quality monitoring is through schools, where youth are engaged to think more about air quality, environmental health, and climate change. Schools in Yakima County, Washington, were heavily impacted by wildfire smoke through the summer of 2023 and into the start of the school year.

As a result, University of Washington researchers partnered with local high schools to set up school-based monitoring networks and co-develop a cohesive curriculum to engage student thinking about air quality (Stampfer et al., 2022). They found that hands-on access to monitors and data were key to learning. They also found that engagement with local air quality specialists helped students connect what they were learning to the broader implications for their community, such as the need to address the health impacts of air pollution for outdoor workers, the elderly, and other vulnerable populations.

Similarly, Denver, Colorado’s Love My Air program across the Denver Public School District is working “to reduce air pollution and limit exposure through behavior change, advocacy, and community involvement.” The program has placed air quality monitors at over 30 different schools and provided both curricular materials for students and professional development opportunities for teachers and school nurses to become more involved in reducing student and community exposure to air pollution across the city.

Along with children, outdoor workers are particularly vulnerable to the health impacts of increased air pollution from climate change. Model results published by Marlier et al. (2021) predict that agricultural workers will have a 35 percent increase in wildfire smoke exposure days across California by mid-century. The researchers also determined “that existing monitoring networks do not provide adequate sampling” of particulate pollution to effectively protect worker health.

In California, air quality guidelines require employers to lower worker exposures when the AQI is above 150, but do not specify where to acquire the AQI data—a notable omission, given that several agricultural counties do not monitor air quality at all. Increased access to localized air quality data could significantly improve outdoor worker protections from smoke and other air pollution sources.

The big picture

As climate change accelerates and extreme weather events affect more people each year, accurate air quality monitoring networks can help combat these impacts. Local community groups can bolster the networks of federal- and state-coordinated monitoring networks, and engage in crucial community decision-making and improve rapid response to air quality events, public health advocacy, education, and social cohesion.

The post Air Quality Monitoring Networks Support More Climate-Resilient Communities appeared first on Energy Innovation: Policy and Technology.

This post is the fourth in a series titled “Real Talk on Reliability,” which will examine the reliability needs of our grid as we move toward 100 percent clean electricity and electrify more end-uses on the path to a climate…
The post Air Quality Monitoring Networks Support More Climate-Resilient Communities appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

In With The New, Then Out With The Old – A Managed Transition Is Key To Maintaining Resource Adequacy

This post is the second in a series titled “Real Talk on Reliability,” which will examine the reliability needs of our grid as we move toward 100 percent clean electricity and electrify more end-uses on the path to a climate stable future. It was written by Michelle Solomon, Senior Policy Analyst in the Electricity Program. A shorter version of this article was published in Utility Dive. Other posts in this series covered Rethinking the Reliability of the Grid

 

A significant aspect of the Biden administration’s plans to reduce emissions from the power sector is currently under debate – the Environmental Protection Agency’s (EPA) proposed power plant greenhouse gas emission rules, which would establish emissions limits for new and existing natural gas plants, as well as existing coal plants.

If adopted, the proposed rules will require steep emissions reductions by the early 2030s from any coal plants that do not retire before 2040. For existing gas plants, the rules require emissions controls such as carbon capture or hydrogen blending for any large gas unit that operates as a baseload plant. For new gas, the rules place similar restrictions on all units that operate more than 20 percent of the time.

Power providers, grid operators, and clean energy advocates have offered reactions to the proposed rules, and Congress recently held hearings on reliability of the grid in the context of the rule. Industry representatives have raised concerns surrounding resource adequacy – whether there are in fact enough resources to supply energy and capacity to meet rising demand.

There are two separate questions that underlie concerns about maintaining resource adequacy through the clean energy transition.

First, is it technically feasible to ensure resource adequacy with the energy resources that would be allowable under the proposed EPA rules? And if so, how might the methods of measuring and planning for resource adequacy need to change to account for the future resource mix?

And second, is it practically feasible to bring enough resources online fast enough to replace those that are projected to retire?

The answer to each of these questions is yes–if good policy enables a managed transition that balances retirement of the old with installation of the new.

We Can Reach 80-90 Percent Clean Electricity With Existing Technology 

Researchers have explored deep-decarbonization scenarios and agree that the U.S. can achieve up to 90 percent clean electricity generation using only existing technology. For example, the 2035 Report 2.0 found that a 90 percent clean grid could meet demand at all hours of the year through the addition of existing energy technologies like solar, wind, and batteries. In addition, no new coal or gas plants would need to be built, even with increased demand from the high electrification of transportation, buildings, and industry.

The Net Zero America study similarly finds that clean sources of energy can supply 70-85 percent of U.S. electricity by 2030. Here, the electricity mix is largely wind and solar, with hydro and nuclear remaining relatively constant while gas usage decreases by about 25 percent and coal generation goes to zero. The National Renewable Energy Lab research agrees, finding that 71-90 percent of electricity could come from clean sources by 2030, again all with existing energy technologies.

Regional studies support the same conclusion, with GridLab and Telos Energy finding that California could reach 85 percent clean electricity by 2030 while maintaining resource adequacy with the addition of primarily wind, solar, and batteries. Here, the use of a diverse set of clean resources, including offshore wind and geothermal, significantly decrease the necessary deployment rate to meet the 85 percent clean threshold.

To be clear, none of these studies claim that continued use of natural gas is not needed during the energy transition. Existing gas plants will be an integral part of the power system for the foreseeable future. However, their value will shift increasingly toward use as capacity resources for reliability during risk periods, while their total annual energy contributions are expected to drop significantly – just as the EPA rules propose.

While research has been done on the pathway from 90 percent or 95 percent to 100 percent clean electricity, these studies tend to rely on technologies not yet commercialized – but we are far from such a point in time, which means we have time for technologies and grid operations to evolve to meet the last five to ten percent. Keeping the lights on with solely wind, solar, and batteries may be possible at these higher percentages, though modeled costs tend to be prohibitively high without incorporation of dispatchable clean resources or significant flexible demand.

For example, the “Moonshot study” by GridLab that uses the Public Service Company of New Mexico as a case study finds that there are several viable supply-side pathways to 100 percent clean electricity, likely combining possible future technologies including multi-day energy storage, dispatchable clean sources like geothermal, nuclear, hydrogen combustion turbines, or thermal resources with carbon capture and storage. Priya Sreedharan, program director at GridLab and an author of the study, highlights the importance of not letting uncertainty in this final stage delay action on building a lot of clean energy now, saying “It’s okay that we don’t know exactly what the last 10-20 percent will be. The focus needs to be on building the stuff we know we need, and not get hung up on what that perfect clean firm resource is.”

Research shows mature technologies can get us cost-effectively to high shares of clean electricity, and there are viable pathways to 100 percent clean. However, to plan for a resource adequate system using clean energy, some changes are needed.

Resource Adequacy Planning Should Adapt For Weather-Dependent, Energy-Limited Systems 

Resource adequacy is undoubtably more complicated in a high renewables world, but planners can take several actions to adapt, including consistently accrediting each resource type, accounting for the interdependent nature of clean resources, and updating planning practices for changing risks.

First, while critics continually highlight that wind and solar energy are weather-dependent and have a variable energy output, many do not apply the same scrutiny to fossil fuel resources and consider them to be always available. This is one of the biggest pitfalls in resource adequacy planning, and one that has had particularly serious implications during extreme weather.

Derek Stenclik, founder of the independent modeling firm Telos Energy and lead author of a recent Energy Systems Integration Group paper on future resource adequacy emphasizes that “there is no such thing as perfect capacity. We need to recognize that all resources have challenges in meeting reliability needs,” and that the impression that there is a type of electricity generator that can be considered “firm”, or available to be dispatched at any time, is a widespread myth. For example, during Winter Storm Uri, un-winterized gas plants across the state of Texas failed simultaneously, making up 58 percent of the unplanned outages. During Winter Storm Elliot, it was nearly the same story, with 70 percent of the unexpected outages coming from gas plants. Weather-related correlated outages will continue to be an issue as power systems add renewables, so ensuring all power plants are held to the same standard is crucial.

Second, in a clean electricity future, the reliability value of each resource becomes increasingly dependent on the others. To perfectly determine each resource’s value would require complex calculations that evaluate the entire generation portfolio and the relationship between each resource. However, transparency and certainty on future accreditation values is important for those trying to bring new resources online, and sometimes we will have to “accept that none of these methods will be perfect”, says Sreedharan, in accrediting these resources to keep markets accessible and resources coming online quickly.

Third, resource adequacy analysis has long operated by identifying the time of day or year in which the peak electricity demand occurs, and then planning to have enough capacity available, plus an additional margin of around 15 percent to account for any unexpected outages. However, this paradigm is changing rapidly as the risky periods on the grid no longer occur at the time of peak demand.

Stenclik highlights that while most planners now “understand that the risk hours are shifting to the evening as the sun sets,” not all yet recognize that the system risks will be “transitioning to winter – partially because of solar, but also due to cold snaps constraining gas supplies, increased electrification for electric winter heating, and the lower efficiency of electric vehicles in cold weather.”

Furthermore, considering instantaneous periods of risk will no longer suffice. Increasingly, a new limiting factor for adequacy will be whether energy in one period is enough to charge batteries or other storage technologies to supply capacity in another. While more sophisticated utilities and all ISOs already analyze risk across all hours of the year using chronological modeling, this approach is becoming more of a requirement than it has been in the past. Planners will need to assess a diversity of portfolios against metrics like expected unserved energy and loss of load expectation that examine all hours of the year.

With weather systems typically confined to one region of the country, interregional transmission has been shown to have significant resource adequacy benefits, especially in high-renewable systems, because it allows regions to export and import during times of need that may occur with simultaneous times of excess in other regions, as seen in Winter Storm Uri. Demand-response and energy efficiency, too, can be particularly important during short, rare events – they are much cheaper than new power plants, and can shift or reduce energy usage and reduce that net load peak without having to build these. The demand-side considerations of resource adequacy have great potential and will be explored further in the next installment in this series.

These are just a few of the ways resource adequacy is evolving across the country, and several resources explore principles for this new paradigm in depth, such as a deep dive on capacity accreditation from Stenclik and the Energy Systems Integration Group.

 

Addressing Uncertainties About Clean Energy Technologies

Yet, while IBRs are moving quickly to adapt their programming to enhance their grid performance, some recent incidents with IBRs have raised concerns among reliability experts. For example, ERCO has seen large amounts of solar and wind trip offline in response to a grid fault. The largest of them, the Odessa Disturbance 2 incident in June 2021 involved 14 solar facilities and resulting in the loss of over 1.5 gigawatts of solar power.

While these incidents are uncommon, they spotlight the need for appropriate responses to avoid their occurrence in the future. ERCOT has established an IBR working group make recommended improvements and mitigate future potential risks. The North American Electric Reliability Council (NERC) has formed an IBR performance task force working to address innovative solutions. Another notable collaborative network for research and emerging practices is the Energy Systems Integration Group, as well as numerous efforts being spearheaded by the U.S. Department of Energy and various national laboratories.

Early efforts to achieve consensus around technical performance and any accompanying standards will aid grid operators eager for near-term solutions and new approaches.

New Policies Are Needed To Bring A Managed Transition To Fruition 

No accreditation or probability calculation will be able to avoid reliability issues if we are not bringing new resources online apace of retirements. The risk of capacity shortfall is not a problem that is specifically driven by the proposed EPA rules, but instead a trend that has proliferated over several years. This pattern evolved largely because of uneconomic coal plants closing before their previously planned retirement date while new clean resources, that could make up the retiring capacity, have faced barriers to entry. Whether or not the EPA rules are finalized as is, grid operators, utilities, and the policymakers that support them will need to deal with this phenomenon.

The interconnection queue presents one of the biggest sources of project delay and cost increases, but it is also an area where grid operators have the most control. FERC Order 2023 has reckoned with many of the sources of interconnection delay, but RTOs should go even further. One of the reforms that goes beyond Order 2023 that could represent a step-change in interconnection is moving to an energy-only interconnection approach, which involves more limited studies and upgrades but requires resources to take additional curtailment risk.

Beyond improving interconnection, long-term, improved resource planning that includes transmission will be the foundation of a managed transition to clean energy. To quickly increase transmission capacity, utilities and grid operators should utilize grid enhancing technologies and advanced conductors to upgrade the capacity of existing transmission lines. With more advance notice on planned retirements, grid operators should also proactively plan transmission to enable reliability through retirements, instead of waiting until retirement is imminent. Being proactive here can prevent  finding that transmission upgrades are needed to maintain stability and rely on the “reliability must run” process through FERC that costs ratepayers money to keep uneconomic plants running.

There is an opportunity through the EPA’s proposed rule to create more certainty around the timeline for the clean energy transition that we are already undergoing. The poor economics of coal plants have been driving the transition to date, creating sudden retirements, and catching grid operators by surprise. Now, it’s time to turn the technically feasible clean energy future into reality via a managed transition. We have the chance to look decades ahead and plan a clean future that will have the best outcome for reliability, customers, and the climate.

The post In With The New, Then Out With The Old – A Managed Transition Is Key To Maintaining Resource Adequacy appeared first on Energy Innovation: Policy and Technology.

This post is the second in a series titled “Real Talk on Reliability,” which will examine the reliability needs of our grid as we move toward 100 percent clean electricity and electrify more end-uses on the path to a climate…
The post In With The New, Then Out With The Old – A Managed Transition Is Key To Maintaining Resource Adequacy appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

By Emilio Jack-Scott and Liz Carver

Winter is coming, and people across the country have started turning on their heat to take the edge off the cold. With clear memories of last winter’s high heating costs and this season’s prices predicted to remain at near-record levels, many are resisting as long as possible before finally flipping the switch on their thermostats.

Figure 1: Source: U.S. Energy Information Administration, Residential Energy Consumption Survey (RECS).

The impacts on both psychological and physical health and the economic toll of insufficient heat in winter is staggering and leaves an intergenerational wake. Household members, especially children and the elderly, suffer more from poor health (including an uptick in respiratory illnesses), have higher rates of anxiety and depression, and incur more trips to the hospital. Children are more likely to exhibit rule-breaking behaviors, such as skipping school. Physical and financial stress compound, and domestic disturbances and abuse rise. And the most extreme cases of energy insecurity result in injury or death due to unsafe temperatures or from using ovens or stoves as primary or secondary heat sources.

The energy transition from fossil fuels to renewable energy presents a critical opportunity to rectify this energy injustice. But to realize that potential, recent research calls upon policymakers to pay attention to important gaps in the ways heating energy burden and poverty are measured, and how policy prescriptions can be designed and implemented to address energy burden inequities, lest they inadvertently exacerbate energy insecurity in the transition.

 

Who is impacted by home energy poverty?

An uptick in research over the last decade has confirmed what many households have known for decades: low-income households pay a much higher percentage of their income on heating costs than higher-income households.

The energy burden of heating and cooling is often based on the percentage of a household’s income spent on energy. Many assistance programs categorize energy burdens as low (<6 percent income), high (>6 percent), and severe (>10 percent), as defined by a 2020 report published by the American Council for an Energy-Efficient Economy (ACEEE). According to the report, 12 percent of the U.S. population spent between 6 and 10 percent of their income on energy, and a whopping 13 percent of the population spent more than 10 percent of their income on energy (which constitutes a “severe energy burden”)—that’s nearly 16 million people in this the U.S. paying over a tenth of their limited income on energy costs.

The report also illustrates the disproportionate distribution of energy burden by income level, race and ethnicity, age, and housing type. Inequities in energy burden are shouldered by low-income households (even more pronounced among low-income seniors and those with disabilities); Native American, Black, and Hispanic households; renters; and low-income multifamily housing units and manufactured homes (both of which have notoriously poor weatherization) (Figure 2).

Figure 2: National energy burdens across subgroups (i.e., income, race and ethnicity, age, tenure, and housing type) compared to the national median energy burden. Source: Drehobl et al., 2020.

Historical policies and social context strongly influence today’s distribution of energy poverty. Redlining policies that limited mortgages for communities of color, especially Black Americans, have a lasting legacy evidenced in today’s heating inequities. In a 2022 paper in Energy Research and Social Science led by Benjamin Goldstein, the authors examined household energy usage intensity and carbon emissions against household race and historical policies.

They found that energy use intensity is significantly higher in historically redlined districts, which are still predominantly African American neighborhoods. African Americans are also more likely to be renters than homeowners and are more likely to be in energy-inefficient housing. There have been very few incentives for landlords to invest in efficiency or weatherization programs, since the utility cost for heating and cooling is usually the responsibility of renters (what is frequently referred to as the “split-incentive” problem).

 

How energy poverty is measured

So how can we ensure the accountability of policies and programs aimed at reducing energy poverty and addressing these inequities?

Another recent paper published in Energy Policy, led by author Luling Huang, points to the critical need to more accurately quantify levels of energy poverty. Traditional approaches to assessing energy poverty have largely fallen into two buckets: 1) asking consumers to self-assess the financial burden of heating and cooling their homes, or 2) using indicators or proxies such as how much energy is consumed, how much consumers spend on energy, building energy efficiency, and household income.

But as Huang’s findings confirm, both of these approaches fail to adequately capture the extent to which households limit their heating energy usage in order to reduce costs. Huang and colleagues measured heating and cooling usage in direct response to temperature changes, and analyzed consumption patterns against census income data to assess inequities. They found that a significant percentage of households exhibited dangerous levels of “energy limiting behavior” each year, but were not being captured by traditional metrics.

Huang and colleagues found low-income households frequently turn on heating units earlier in the winter than their higher-income counterparts (Figure 3). While this may seem counter to the assumption that low-income households are more apt to limit their heating due to financial constraints, the authors point to the substandard insulation and efficiency of many affordable housing options, which necessitate earlier and longer winter heating periods, as the likely cause.

Figure 3. “Electricity use as a function of daily average temperature by three income groups. The Green, orange, and purple lines represent Income Group-Less than $15,000, Income Group-$35,000 to$49,999, and Income Group-$150,000 or more, respectively. For heating, electricity consumption when daily average temperature = 30 ◦F is the median daily average consumption of an income group inFebruary 2021 when electricity consumption peaked in that heating season. Filled circle represents the median balance point of an income group. The horizontal segment represents the median baseload of an income group.” Source: Huang et al., 2023.

Despite the poor building efficiency of many low-income homes, consumers actually use significantly less energy per square foot throughout the heating season compared to high-income homes, which consume 52 percent more heat per square foot annually. Furthermore (and despite significant energy-limiting behaviors), low-income households consistently end up shouldering “high” and “severe” energy burdens (spending between 6 percent and 10 percent, or more than 10 percent, of their income on energy, respectively) throughout the heating season (Figure 4).

Figure 4. “Relationships among heating balance point, electricity consumption in heating season, and energy burden by income groups. Each data point represents one household. Each panel corresponds to one income group. Electricity consumption is calculated as the sum of electricity consumption in heating season (eight months). Energy burden is calculated as the ratio of electricity bill over the median income of the Census block group that a household belongs to. The blue, red, and black dots represent energy burden levels of 6% or below (low energy burden), between 6% and 10% (high energy burden), and higher than 10% (severe energy burden),respectively.” Source: Huang et al., 2023.

In Figure 4, the “heating balance point” on the x-axis indicates the outdoor temperature at which households were compelled to turn on heating units throughout winter. Note the significant number of households (each dot) that have heating units on when the outside temperature is in the 30s and 40s, but are consuming very little electricity (y-axis). When a household is in this situation, they are clearly rationing heating electricity and suffering the psychological, health, and socio-economic impacts of insufficient heating.

Huang and colleagues calculated the percentage of the study households living in these conditions totaled a whopping 24 percent of the study population, the majority of whom would not have been captured by traditional energy burden metrics. Because these households had so severely limited their electricity consumption, their costs wouldn’t have exceeded the traditional threshold of “low energy burden” (less than 6 percent income spent on energy).

 

What are U.S. policymakers doing to try to reduce energy poverty in the transition to renewable energy?

These nuances in who endures energy poverty and how that burden is tracked are critical for improving existing policies and creating new policies that seek to reduce both energy insecurity and carbon emissions.

For instance, both Huang and Goldstein spotlight hidden energy burdens, which could be used to broaden eligibility requirements for existing assistance programs like the Low-Income Home Energy Assistance Program (LIHEAP), or the Weatherization Assistance Program (WAP). LIHEAP is a federal- and state-funded effort to provide assistance for home energy bills, and WAP can provide whole-house weatherization resources for low-income households, but eligibility for both is currently based on income level. The same is true for many state-funded energy assistance programs.

Huang and colleagues encourage policymakers to go beyond using household income as the only eligibility criteria for assistance programs, since this can result in the oversight of compounding factors of housing type, race, and the nuances of financial stress, regardless of income. Huang suggests installing and using smart meters to properly monitor heating burden and insecurity within households. Energy assistance programs can then receive alerts when energy limiting behaviors reach levels of concern, and better tailor their support to vulnerable households.

The landmark Inflation Reduction Act (IRA) of 2022 includes $391 billion for a variety of programs, incentives, and tax credits to accelerate a clean energy transition, decarbonize the economy, and mitigate climate change. Several of these programs can help reduce energy poverty by making energy-efficient home upgrades and renewable energy adoption more accessible to low- and middle-income families.

As Goldstein and colleagues underscore in their paper, one of the biggest barriers for the communities most affected by energy insecurity is limited availability of upfront capital to invest in energy-saving upgrades or renewable installations, and insufficient tax liability to benefit from tax credit incentives. Policies that decrease upfront costs through direct consumer incentives, such as instant rebates, are especially helpful.

In response to this need, the IRA allocated nearly $9 billion for states and Tribes to design and implement two Home Energy Rebate Programs to accelerate the adoption of residential energy efficiency and renewable energy systems. The Home Efficiency Rebates program provides instant rebates to homeowners and landlords of single- and multi-family homes for performance-based, whole-home energy efficiency and electrification upgrades, without income restrictions.

The Home Electrification and Appliance Rebates program provides direct rebates of up to 100 percent to help low- and middle-income households purchase and install energy-efficient electric appliances, such as heat pumps, water heaters, and stoves. Huang and colleagues specifically point to the IRA’s rebate programs as “a major step forward to help households (especially low-to-middle-income households) to improve energy efficiency at home.”

Beyond the direct rebate programs, the IRA allocates $3 billion for Environmental and Climate Justice Block Grants, which can be used to fund community-led projects in historically underserved communities, including initiatives to reduce energy costs through renewable energy or energy efficiency. Another IRA program provides $1 billion in funding to increase energy efficiency in affordable housing.

As these new programs are rolled out, it is critically important to ensure that they truly benefit energy insecure households. Policymakers at the metro, state, and federal levels will need to hold landlords accountable to make sure that subsidized energy efficiency and renewable energy improvements don’t result in “renovictions,” as energy upgrade costs are passed along to renters, making rents unaffordable. Goldstein points to possible solutions, such as allowing tenants (and landlords) to pay for retrofits through monthly utility payments (as long as energy savings outweigh improvement costs), or providing compensation to landlords dependent on renewal of leases with prior tenants at comparable rates when renovations have been completed.

Energy burden, insecurity measurements of household income spent on energy expenses, and energy limiting behaviors must also be closely monitored to ensure that weatherization, efficiency, and renewable energy projects effectively reduce energy insecurity for vulnerable communities.

Goldstein et al. and Huang et al. both point to the need to expand investment at the federal and state levels to mitigate the impacts and drivers of energy poverty. In addition to assistance programs, Huang and colleagues point to the need for general investment in infrastructure and jobs to address the root of inequitable energy burdens and improve everyday living conditions.

 

Featured research:
Drehobl, A., Ross, L. and Ayala, R., 2020. How high are household energy burdens. An Assessment of National and Metropolitan Energy Burdens across the US.
Goldstein, B., Reames, T.G. and Newell, J.P., 2022. Racial inequity in household energy efficiency and carbon emissions in the United States: An emissions paradox. Energy Research & Social Science, 84, p.102365.
Huang, L., Nock, D., Cong, S. and Qiu, Y.L., 2023. Inequalities across cooling and heating in households: Energy equity gaps. Energy Policy, 182, p.113748.

The post Living In The Cold: Addressing The Inequalities Of Heating Energy Poverty In Winter appeared first on Energy Innovation: Policy and Technology.

By Emilio Jack-Scott and Liz Carver Winter is coming, and people across the country have started turning on their heat to take the edge off the cold. With clear memories of last winter’s high heating costs and this season’s prices…
The post Living In The Cold: Addressing The Inequalities Of Heating Energy Poverty In Winter appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

By Emilio Mateo

Llama in front of Ausangate, the highest peak in Peru’s second largest glaciated system, Cordillera Vilcanota.

Mountain glaciers and polar ice caps are experiencing extensive and increasingly fast loss rates as global temperatures warm. The well-documented retreat of mountain glaciers will have severe ecological and societal costs as the shift to a post-glacial landscape represents one of the largest and fastest ongoing ecosystem changes.

A recent report from the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services states that approximately one million plant and animal species are under threat of extinction worldwide due to human-induced climate change.

As new landscapes and ecosystems emerge from the loss of glacier coverage, scientists are trying to understand what the consequences are for biodiversity in these regions, and what can be done to increase the adaptation potential of biodiversity. Emerging research underscores that we are at a critical juncture for decisions to be made about the protection and adaptation of post-glacial ecosystems.

Figure 1. “Schematic of glacier retreat and the emergence of post-glacial ecosystems. Changes are illustrated for mountain (top) and polar (bottom) regions in a climate that is unfavorable to glaciers, as experienced globally since 1900. Different types of post-glacial biome, in which diverse ecosystems may emerge, are shown.” Source: Bosson et al., 2023.

Modeling post-glacial ecosystems

In a recent article published in Nature, J.B. Bosson and a team of French and Swiss researchers modeled future glacier evolution through 2100 (Figure 1). They projected that the global extent of ice-free areas will grow by 149,000 km2 (the area of Nepal) to 339,000 km2 (the area of Finland) by the end of this century.

They also calculated subglacial (below glacier) topography from modeled high-resolution ice thickness, providing information such as terrain slopes as well as where water might accumulate in topographic depressions as ice melts. They then combined this information with mean annual air temperature projections in order to examine future ecological conditions. The study established four habitat categories: extreme (cold and either steep or deep water accumulation), two levels of intermediate (either cold or steep, or cold or deep water accumulation), and mild (either temperate and flat or temperate and shallow water accumulation).

Bosson et al. determined that post-glacial ecosystems will store between only 0.4 percent to 5 percent of the water currently stored in glaciers. Moreover, invertebrates that currently live exclusively on glaciers or in glacial streams, such as glacier ice worms and stoneflies, will continue to lose habitat and may not be able to survive in post-glacial ecosystems.

Biodiversity tradeoffs

While the loss of glaciers poses an existential threat to certain species, this analysis suggests that some of the deglaciated habitats will emerge as “diverse biomes and represent rare pristine terrestrial, marine and freshwater ecosystems when natural areas are globally largely modified or degraded (especially in freshwater and coastal environments).”

Specifically, in regions where mild or intermediate habitat conditions are projected to emerge, such as Iceland, the Andes, and New Zealand, numerous terrestrial and aquatic species should be able to adapt to the new post-glacial ecosystems. In mild habitats, as categorized above, new plant growth may even capture and store significant amounts of carbon through growing biogeochemical processes and biomass (Figure 2).

In order to fully understand the biodiversity tradeoffs in post-glacial habitats, the authors note that their model estimates and the environmental impacts will need to be further explored on a local scale.

Figure 2. “Characteristics of emerging land in deglaciated areas in 2100. Glacier location and individual regions are shown on the basemap. For each region and globally, half circles in the center refer to the modeled emerging land area in 2100 for the SSP-1-1.9 (low-emission scenario) on the left and 5-8.5 (high-emission scenario) on the right. On their left and right, the relative distribution of habitats and carbon storage potential in emerging soils are shown in 2100 for the SSP-1-1.9 and 5-8.5, respectively. Basemap originates from www.naturalearthdata.com.” Source: Bosson et al., 2023.

Plotting llamas

A closely related article led by Anaïs Zimmer, published in Nature Scientific Reports at the end of September, explored a single post-glacial ecosystem in Peru’s Cordillera Blanca region from 2019 to 2022. The aim of this study, conducted by a multinational team of researchers from the United States, Peru, and France, was to assess whether native llamas influence soils and vegetation following the retreat of the Uruashraju glacier (Figure 3). Taking place 24 to 40 years post-glacierization, this study was set up at the opportune time to measure the changes occurring in this environment. It’s an example of exactly the kind of place-based local research that is required to ground-truth model outputs like those published by Bosson and colleagues.

Figure 3. “Location and study site set-up. Map of location with respect to the Santa River watershed (a), and Río Negro sub-watershed (b). Map of the experiment within the Uruashraju glacier foreland (c). The glacier retreat outlines were produced and provided by the ANA (Área de Evaluación de Glaciares y Lagunas, Autoridad Nacional del Agua, Huaraz) based on topographic field surveys of the glacier fronts since 1948, and analysis of photographs. Maps generated by authors with licensed software ArcGIS Pro 3.0.2 (https://www.esri.com/en-us/arcgis/products/arcgis-pro/).” Source: Zimmer et al., 2023.

Within four llama inclusion plots and four control plots, the authors collected soil samples, measured plant diversity and productivity, and sampled llama dung piles (Figure 4). The plots with llamas were shown to have greatly increased soil organic carbon and soil nitrogen, along with a 57 percent increase in vascular plant cover during the final two years studied. In the llama plot, the authors also identified four new species that were not present prior to 2019. Some of these results were attributed to the fact that llamas can carry seeds from lower elevations or other valleys to post-glacial ecosystems, potentially initiating this regrowth.

Figure 4. “Experimental design and in situ surveys. Design of the experiment (a), Llama glama within a llama plot (b), 1m² vegetation subplot (c), seedling germinated from llama feces found within the experiment in June 2022 (d).” Source: Zimmer et al., 2023.

Following three years of field data collection and statistical analyses, Zimmer and colleagues found that “the presence of llamas had a substantial impact on the primary vegetation succession at the Uruashraju glacier foreland.” In other words, post-glaciated areas where llamas were active on the landscape had significantly more biodiverse plant communities than those without.

In Peru, local communities are beginning to re-introduce llamas and other Andean camelids (vicuña, alpaca, and guanaco) at high elevations, confirming local knowledge of the benefits these mammals can provide. Importantly for similar regions around the world, the study findings provide insight into the possible future management and conservation of these newly exposed post-glacial ecosystems through rewilding interventions of other large mammal species that can play a critical role in the spread and germination of seeds.

Climate adaptation strategies

A review article published in 2022 by Thomas Ranius and colleagues compiled recommendations from 74 research papers for how to adapt current conservation strategies of protected areas, such as wilderness areas and national parks, in the face of climate change. While the article does not focus on post-glacial landscapes, its findings are relevant to glacial areas, most of which are found in protected areas.

The authors found that research conducted in this space produced recommendations that fell mostly into five main categories: “(i) Ensure sufficient connectivity; (ii) Protect climate refugia; (iii) Protect a few large rather than many small areas; (iv) Protect areas predicted to become important for biodiversity in the future; and (v) Complement permanently protected areas with temporary protection.” These recommendations could be applied individually or collectively, depending on the climate adaptation needs at the local scale of each protected area.

When considering these recommendations in the context of a glacial and post-glacial environment, the most important suggestion is to protect areas predicted to become important for biodiversity in the future. The paper recommends extensive monitoring of regions that implement one or more of these recommendations to evaluate their effectiveness and to determine if further climate adaptation strategies are necessary. With post-glacial ecosystems so rapidly expanding in a changing climate, the authors underscore the urgent need for greater research and monitoring of these habitats to help inform conservation decision-making.

Ultimately, local managers of protected areas will need to decide which climate adaptation strategies are best suited for their environments. Locally relevant adaptation strategies, such as the reintroduction of llamas in the Peruvian Andes, helped to boost biodiversity. Elsewhere, the five recommendations from the scientific literature discussed here could be used to protect biodiversity in newly ice-free habitats.

Cumulatively, these articles urge further study and monitoring of current climate adaptation strategies at the base of mountain glaciers. Recent news articles also call for future environmental policies that consider adaptation strategies for both biodiversity loss and climate change together, instead of approaching them separately.

We cannot fully stop glaciers from receding, but through better stewardship of the exposed novel ecosystems, we can help them succeed in being more productive carbon sinks and better habitats for diverse flora and fauna.

 

Featured research:
Bosson, J.B., Huss, M., Cauvy-Fraunié, S. et al. Future emergence of new ecosystems caused by glacial retreat. Nature 620, 562–569 (2023). https://doi.org/10.1038/s41586-023-06302-2
Ranius, T., Widenfalk, L.A., Seedre, M. et al. Protected area designation and management in a world of climate change: A review of recommendations. Ambio 52, 68–80 (2023). https://doi.org/10.1007/s13280-022-01779-z
Zimmer, A., Beach, T., Riva Regalado, S. et al. Llamas (Llama glama) enhance proglacial ecosystem development in Cordillera Blanca, Peru. Scientific Reports 13, 15936 (2023). https://doi.org/10.1038/s41598-023-41458-x

The post When The Glaciers Are Gone: Managing For Biodiversity appeared first on Energy Innovation: Policy and Technology.

By Emilio Mateo Mountain glaciers and polar ice caps are experiencing extensive and increasingly fast loss rates as global temperatures warm. The well-documented retreat of mountain glaciers will have severe ecological and societal costs as the shift to a post-glacial…
The post When The Glaciers Are Gone: Managing For Biodiversity appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

This post is the second in a series titled “Real Talk on Reliability,” which will examine the reliability needs of our grid as we move toward 100% clean electricity and electrify more end-uses on the path to a climate stable future. It was written by Sara Baldwin, senior director of the Electrification Program at Energy Innovation, with featured contributor Dr. Michael Milligan. A shorter version of this article was published in Utility Dive.

 

In 2000, the electricity grid earned the distinction as the top engineering achievement of the twentieth century by the National Academy of Engineering. Even with this badge of honor, the grid needs help as the country transitions from relying on fossil fuels to clean electricity. While a clean energy future is necessary, it comes with its own challenges as aging fossil field plants retire and new resources come online. Just as the introduction of the first smart phone prompted skepticism about its future in a world dominated by landlines, so do these new resources . This is especially true when it comes to their ability (and incentives) to provide essential reliability services (ERS).

The transformation to new, clean energy resources is already underway, and reliability considerations must change apace. Luckily, these new resources are more than capable of providing ERS. Now, grid operators must gain confidence that the reliability services from these clean, renewable resources are available when needed, and regulations and market signals must align with these needs.

The Reliable Operation of the Grid is Apple Pie, Reliability Services Are the Slices

Grid reliability during real-time operation is determined in large part by the deployment of reliability services, or grid services, which depend on the attributes and responsive characteristics of different energy resources. If reliable operation of the grid is apple pie, reliability services represent the slices of the pie.

The electricity grid is subject to the laws of physics, which means electricity supply and demand must always be kept in balance to maintain relatively constant frequency and voltage. During normal operations, relatively small changes occurring in each moment must be matched by corresponding changes in resource output to maintain balance.

If the supply-demand imbalance becomes too large, this imbalance could lead to emergency grid operations. In the extreme, something more severe, including rolling outages or damage to equipment or appliances, could occur. Think of a cup of water filled to the brim or a tightrope walker maintaining equilibrium at great heights. In either case, any amount of disturbance beyond a nominal amount will result in a spill. Such is the grid.

Source: The Electric Reliability Council of Texas (ERCOT) provides a useful real-time graph a grid operating at a nominal frequency of 60 Hz. The x-axis is time, the y-axis is frequency in hertz (Hz), which measures the number of wave cycles passing through a given point in a second.

Much like the ingredients in an apple pie recipe, every machine, technology, and software operating to supply electricity has different characteristics that enable them to respond to the laws of physics and provide different contributions to grid reliability. Importantly, not every resource must provide all types of reliability services, but the entire pie, or portfolio, must be able to respond appropriately to bring the grid back to balance and resume “normal” operating conditions.

To maintain stability, each grid service available in the portfolio acts in a particular time frame. For example, fast frequency response occurs in the seconds immediately following a disturbance to slow decline, and is followed by primary frequency response, which stabilizes frequency. Economic dispatch, which as the name suggests is grounded in economics, typically operates at a five-minute time step, and longer time steps are typically managed by automatic or manual dispatch through market mechanisms. The entire portfolio must have some level of flexibility to provide all of these in a changing environment.

When more major disturbances occur, the pie must have sufficient disturbance ride-through capabilities to maintain frequency and voltage to keep resources on-line through moments of instability. In the case of a generator tripping offline the grid’s entire portfolio must be capable of providing reliability services to avoid a more severe cascading effect, illustrated in the image below.

Source: Milligan Grid Solutions

Similarly, the voltage of the grid must be maintained at nominal levels continuously and be able to respond in response to a disturbance. Maintaining stable voltage is critical to keeping the lights on and avoiding equipment damage, and it requires a different set of capabilities, such as reactive power control, allowing for voltage control in the alternating current (AC) network.

Ma Bell, Meet Smart Phone

Grid operators traditionally obtained reliability services from large thermal units and rotating machines (e.g., coal-fired, nuclear, and hydro-electric power plants) because the physical attributes of those machines provided the grid services needed. Their large, spinning mass provides inertia, which helps contribute to grid stability as supply and demand fluctuate. Coal plants are designed to be synchronized with the grid, so if the frequency drops, the rotating inertia of the coal plant will provide upward “pressure” on the frequency drop, but it will gradually slow down (like taking your foot off the accelerator in your car). This “coasting” bolsters the grid frequency so that other resources can respond, bringing the frequency back up to the right level (in slightly longer time frames). Inertia on its own is not capable of restoring frequency but does help to stabilize it.

The imminent retirement of dozens of coal plants, which have historically provided inertial response during a grid disturbance, is prompting new questions about the ability of renewables and storage to provide this inertia.

Such a task is not as straightforward. Grid reliability expert and former NREL Principal Researcher at the Electric Systems Integration Facility Dr. Michael Milligan explains that “new resources behave differently than incumbent resources.” For example, IBRs can provide nearly instantaneous fast frequency response (FFR), which results in a steeper slope of the initial decline, but frequency can be arrested much sooner than in the traditional case. Therefore, the decline in inertia caused by large thermal retirements and replacement by IBRs does not necessarily pose a problem for the grid; but ongoing studies evaluate these tradeoffs.

Renewable energy, such as solar and wind, for example, connect to the grid via inverters which convert the direct current (DC) they generate to AC flow of the grid. Unlike their rotating machine predecessors (also called synchronous resources), these are asynchronously connected to the grid and either partially or completely interface through power electronics. They can be programmed via their inverter and digital software to provide reliability services, but not always in the same way.  Also known as inverter-based resources, or IBRs, they ramp up and down much more quickly than a conventional power plant, making them more responsive to changing grid conditions. During the hottest summer on record, states and electric grids with more renewables and energy storage have fared well. These resources have helped balance the grid during times of spiking demand for cooling combined with the stresses of extreme temperatures on grid infrastructure. Nonetheless, while “there is an emerging recognition that inverter-based resources can provide certain grid services,” says Milligan, “greater awareness is needed [on how].”

Fortunately, we’re learning that even in the absence of most or all inertial response, IBRs can respond nearly immediately after the triggering event. With sufficient IBRs, the frequency drop can be arrested more quickly, and the IBRs can even act quickly to help restore the nominal frequency. However, the technical characteristics and benefits of this fast frequency response are not as well understood as the traditional incumbents, and doubt remains that IBRs will provide fast frequency response. More collaborative research and investigation into these capabilities is warranted now, before the retirements occur. One such study compared the grid services from a wind plant, a gas plant, and a coal plant and found that wind could provide certain services faster. See illustrative example in figure below.

Comparison between a wind plant and gas turbine after grid disturbance. Source: FERC Docket EL23-28, Exhibit A

In addition, there must be a greater focus on strategies to integrate renewables into markets and compensate them in such a way that reflects their ability to respond. For example, renewable energy developers may be disinclined to program their resources to ride through a voltage event if such a setting could compromise their asset. Going forward, utilities and grid operators should be working to quantify and understand how IBRs can respond during a grid emergency—in some cases the IBRs may be capable of providing a superior response, but they must be sufficiently compensated for doing so.

Batteries, one of the fastest growing new resources, are untapped sources of reliability services. New advanced controls allow batteries to provide stability that has traditionally delivered by conventional synchronous generators (known as grid forming). As these new battery resources come online, there is a  ripe opportunity for evaluating their performance. In fact, batteries are already showing their value – a recent grid reliability event in Texas saw a large frequency decline that risked outages stabilized by largely by energy storage. Demand-side technologies also represent an untapped source of ERS.

Addressing Uncertainties About Clean Energy Technologies

Yet, while IBRs are moving quickly to adapt their programming to enhance their grid performance, some recent incidents with IBRs have raised concerns among reliability experts. For example, ERCO has seen large amounts of solar and wind trip offline in response to a grid fault. The largest of them, the Odessa Disturbance 2 incident in June 2021 involved 14 solar facilities and resulting in the loss of over 1.5 gigawatts of solar power.

While these incidents are uncommon, they spotlight the need for appropriate responses to avoid their occurrence in the future. ERCOT has established an IBR working group make recommended improvements and mitigate future potential risks. The North American Electric Reliability Council (NERC) has formed an IBR performance task force working to address innovative solutions. Another notable collaborative network for research and emerging practices is the Energy Systems Integration Group, as well as numerous efforts being spearheaded by the U.S. Department of Energy and various national laboratories.

Early efforts to achieve consensus around technical performance and any accompanying standards will aid grid operators eager for near-term solutions and new approaches.

Operating a reliable grid requires institutional reforms

Numerous factors impact reliability that must evolve apace of the technologies themselves. For example, energy market rules and economic incentives (often subject to government policies and regulatory requirements), dictate how the energy resources and technologies can (and will) operate on the grid. Ideally, a combination of carrots and sticks can effectively influence grid reliability and performance. They should reflect the real-world operating characteristics of various technologies, allowing and encouraging resources to “show up” with the requisite grid services and in the quantities required by the laws of physics.

Similarly, grid operators, working diligently to ensure the technologies available today are ready and available to provide the necessary grid services, have a role to play in facilitating needed changes: whether through programming a device or piece of equipment, or ensuring the settings allow for certain characteristics to be made available. Shifting how the grid is operated requires more awareness of the dynamic capabilities of IBRs, and appropriate rules and market signals to call on those capabilities during times of need. As IBRs replace traditional resources, inadequate market mechanisms may result in fewer grid services, which could result in a combination of higher prices or strain grid reliability.

Those tasked with grid planning must evaluate the full potential of new resources to ensure the grid of the future can provide needed services based on new and emerging technologies. Such plans should evaluate the real and potential risks (including those caused by climate change-induced extreme weather). In the face of so many emerging and pervasive threats, grid planning is taking on a new level of importance. “If you can’t plan a reliable system, you can’t possibly operate a reliable system,” says Dr. Milligan.

And, as utilities and grid operators deal with mounting challenges in the face of more intense storms, solutions should aim to “make the grid larger than the storm,” says Milligan. This could include more transmission between grid market regions, better coordination between grid systems on emergency response, and planning, and working to ensure market rules sufficiently incentivize IBRs from providing grid services. Investments in grid hardening will also play a role in adaptation to climate change.

A New Recipe for the Pie, Aligned with the Laws of Physics

If essential reliability services are the slices of the pie, it means that adapting to changes already requires an update to the recipe. IBRs can provide much – and perhaps all – of what we need, but new approaches and thinking are needed. Beyond efforts to understand and embrace new technological capabilities, we need to also be asking better questions, such as “how can fast frequency response replace inertia? How do we incentivize resources to provide needed services? Will market designs prevent or inhibit these incentives?” says Milligan. Collaborative research can help, but acceptance of findings and adoption of new approaches can facilitate an expedited evolution.

The post The Future Of Operational Grid Reliability Can Be Bright With Clean Energy appeared first on Energy Innovation: Policy and Technology.

This post is the second in a series titled “Real Talk on Reliability,” which will examine the reliability needs of our grid as we move toward 100% clean electricity and electrify more end-uses on the path to a climate stable…
The post The Future Of Operational Grid Reliability Can Be Bright With Clean Energy appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

Hirebucket

FREE
VIEW