Energy Innovation partners with the independent nonprofit Aspen Global Change Institute (AGCI) to provide climate and energy research updates. The research synopsis below comes from AGCI’s Tanya Petach. A full list of AGCI’s updates is available online.

Aerial view of floating photovoltaic panels on a lake. Image credit: Solar AquaGrid

In arid river basins around the globe, substantial water supply is lost through evaporation. A recent estimate of global reservoir evaporative losses found that annual water volume loss was equivalent to 70 percent of all global municipal water withdrawals in 2010. Nearly one-third of all reservoirs evaporative losses in the world occur in Canada and the United States. Evaporation rates in the United States are especially high, due in part to the fact that the two largest U.S. reservoirs (Lake Powell and Lake Mead) are located in the hot, dry deserts of the Southwest. And evaporation doesn’t just impact reservoirs—it also desiccates irrigation canals, ditches, and holding ponds.

Lake Powell and Lake Mead, both on the Colorado River, have experienced long-term drying trends since the turn of the millennium. Due to a combination of prolonged drought, water overuse, and warming temperatures, these reservoirs lost 61 percent of their full storage volume from January 2000 to April 2023. While this year’s hefty Rocky Mountain snowpack helped alleviate the impacts of the last 23 years of drought, one good snow year isn’t enough to bail the Colorado River out of long-term drought.

Lake Mead water elevation from 1970 to present. The vertical red line represents the start of the Millennium Drought in 2000. Lake Mead reached peak capacity in 1983; in August 2023, Lake Mead was 33 percent full at 1,061 ft. Data source: Bureau of Reclamation.

As water availability decreases in the Colorado River Basin, water use is more highly scrutinized. Alongside municipal, agricultural, and industrial users, evaporation is a stealth water consumer. The Southern Nevada Water Authority recently estimated that approximately 12 percent of the Colorado River’s total annual flow is lost to evaporation and other system elements (e.g., infiltration into ditch banks). In a water-stressed basin where the federal government pays billions of dollars for modest water savings, 12 percent loss adds up to a lot of water. Currently, these losses aren’t well accounted for in the Lower Colorado River, but some experts are urging policymakers to do just that.

While reservoir evaporation contributes to water scarcity in the Colorado River and other arid river basins, water managers are beginning to focus on mitigating evaporative losses. One approach to attenuating this loss is to cover reservoirs and irrigation ditches in shading materials such as the 96 million “shade balls” that were deployed in 2015 to shade Los Angeles Reservoir in California. In recent years, focus has shifted to shading reservoirs and irrigation infrastructure in dual-purpose materials such as photovoltaics, or PV. Pairing PV with water infrastructure has centered around two techniques: floating PV and PV-covered irrigation canals.

Floating photovoltaics involve the installation of solar panels on top of foam, buoys, and other structures that float on the surface of reservoirs, lakes, and ponds. These systems tend to produce energy more efficiently than land-based PV, due in large part to the cooler temperatures of PV over water bodies than on land. As a result, pairing PV with water infrastructure has gained momentum in recent decades as a technique to decrease reservoir evaporation and increase renewable energy production.

Floating photovoltaics are thriving in Asia, which hosts 97 percent of globally installed floating PV, primarily in China, Japan, and Korea. This win-win technology is enticing to reservoir operators, power companies, and municipalities. Project locations include Alicante, Spain, where seven percent of a small irrigation reservoir was covered in floating PV to offset agricultural power needs; the United Kingdom, where six percent of the Queen Elizabeth II reservoir was covered in floating PV for municipal power generation; and Colorado, where the town of Walden is using floating PV to offset power requirements for water treatment.

These plants are relatively new, so energy yields and water savings are far below their full global potential. Theoretically, covering 30 percent of the 100,000 reservoirs around the globe with floating PV has the potential to yield 9,434 terawatt-hours annually, according to a Nature Sustainability article by Yubin Jin and colleagues published earlier this year—the equivalent of approximately 40 percent of global electricity use in 2021. Since reservoirs are often located near communities and metropolitan areas, floating photovoltaics have the potential to produce large quantities of power close to energy consumers. This co-location strategy can decrease transportation and line losses, increasing the overall efficiency of the system. Jin and colleagues estimate that over 150 metropolitan areas could become self-sufficient with local floating PV plants. Globally, producing energy with floating PV on reservoirs could potentially save 106 cubic kilometers of water from evaporative losses each year, a volume equivalent to almost 25 percent of annual household water use in the United States.

The two major reservoirs in the Lower Colorado River remain part of this theoretical future yield. Neither Lake Powell nor Lake Mead has yet tapped into floating PV to curb reservoir evaporation—though studies suggest that 10 percent coverage of Lake Mead could yield enough water savings and power production for Las Vegas and Reno combined.

While the sunny Southwest is slow to adopt floating PV on reservoirs, there is a healthy appetite for PV-covered irrigation canals. Inspired by a University of California, Merced study by Brandi McKuin and colleagues that highlighted potential water savings and energy production from PV-covered irrigation canals in the region, the Turlock Irrigation District in California’s Central Valley is poised to break ground on a project deploying PV over its irrigation canals this fall. The Turlock Irrigation project is a partnership between the irrigation district, a private solar company (Solar AquaGrid), the California Department of Water Resources, and a research group at the University of California, Merced. In a similar vein, the Gila River Indian Community in central Arizona received funding this year from the Bureau of Reclamation for water conservation infrastructure, including PV-covered ditches and canals. And the appetite for PV-covered irrigation infrastructure is far from sated. A letter to the Secretary of the Interior in July, 2023, from a variety of advocacy organizations, requested urgent action to deploy more photovoltaics over irrigation canals.

Rendering of future photovoltaic-covered canal in the Turlock Irrigation District, California. (Image Source: Solar AquaGrid)

While the potential from floating PV on reservoirs and PV-covered canals is massive, the technology remains relatively unproven. Environmental concerns include metal leaching, ecosystem impairment, and decreased light intensity in aquatic ecosystems under the installations. Results from a pilot study on Oostvoornse Lake in the Netherlands show that floating photovoltaics reduce light intensity by 70 to 100 percent under installations, with potential cascading impacts on lake ecosystems. Yet researchers note that traditional PV installations also cause considerable environmental impacts, and direct comparisons are complex. In addition to environmental risks, floating photovoltaics have higher installation costs and raise more maintenance concerns than land-based solar.

Despite these challenges, pairing PV and water infrastructure has enormous potential to help re-stabilize water supplies in the Colorado River and other drought-stricken regions around the planet. In the arid Southwest, intensified scrutiny on evaporative losses, requests for increased federal interest for paired water infrastructure-PV systems, and bold exemplar projects like the PV-covered canal systems in the Turlock Irrigation District and Gila River Indian Community are ushering in a new approach to water management, with massive potential for expansion. As reservoir evaporation continues to squander large quantities of water in arid regions worldwide, it is time to keep the momentum moving forward toward next-generation sustainable solutions at the water-energy nexus.

 

Featured Research
Bax, V., van de Lageweg, W. I., Hoosemans, R., & van den Berg, B. (2023). Floating photovoltaic pilot project at the Oostvoornse lake: Assessment of the water quality effects of three different system designs. Energy Reports, 9, 1415-1425.
Essak, L., & Ghosh, A. (2022). Floating photovoltaics: A review. Clean Technologies, 4(3), 752-769.
Fleck, J., & Kuhn, E. (2023). An Historical Perspective on the Accounting for Evaporation and System Losses in the Lower Colorado River Basin. Science Be Dammed Working Paper, 4.
Hayibo, K. S., Mayville, P., Kailey, R. K., & Pearce, J. M. (2020). Water conservation potential of self-funded foam-based flexible surface-mounted floatovoltaics. Energies, 13(23), 6285.
Jin, Y., Hu, S., Ziegler, A. D., Gibson, L., Campbell, J. E., Xu, R., … & Zeng, Z. (2023). Energy production and water savings from floating solar photovoltaics on global reservoirs. Nature Sustainability, 1-10.
McKuin, B., Zumkehr, A., Ta, J., Bales, R., Viers, J. H., Pathak, T., & Campbell, J. E. (2021). Energy and water co-benefits from covering canals with solar panels. Nature Sustainability, 4(7), 609-617.
Pimentel Da Silva, G. D., & Branco, D. A. C. (2018). Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts. Impact Assessment and Project Appraisal, 36(5), 390-400.
Ramasamy, V., & Margolis, R. (2021). Floating photovoltaic system cost benchmark: Q1 2021 installations on artificial water bodies (No. NREL/TP-7A40-80695). National Renewable Energy Lab.(NREL), Golden, CO (United States).
Schmidt, J. C., Yackulic, C. B., & Kuhn, E. (2023). The Colorado River water crisis: Its origin and the future. Wiley Interdisciplinary Reviews: Water, e1672.
Sen, A., Mohankar, A. S., Khamaj, A., & Karmakar, S. (2021). Emerging OSH issues in installation and maintenance of floating solar photovoltaic projects and their link with sustainable development goals. Risk management and healthcare policy, 1939-1957.
Tian, W., Liu, X., Wang, K., Bai, P., Liu, C., & Liang, X. (2022). Estimation of global reservoir evaporation losses. Journal of Hydrology, 607, 127524.

The post More Water And More Energy: The Potential Win-Win Of Floating Photovoltaics appeared first on Energy Innovation: Policy and Technology.

Energy Innovation partners with the independent nonprofit Aspen Global Change Institute (AGCI) to provide climate and energy research updates. The research synopsis below comes from AGCI’s Tanya Petach. A full list of AGCI’s updates is available online. In arid river basins…
The post More Water And More Energy: The Potential Win-Win Of Floating Photovoltaics appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

This piece was authored by Muhammad Abdullah, an 2023 summer Transportation Policy intern with Energy Innovation and Energy Innovation’s Chris Busch, Director Transportation and Senior Economist.

Ella Kissi-Debrah was born, raised, and died a tragically early death in south London, a hot spot for motor vehicle pollution. Ella’s autopsy found that at even at nine years old, her death was triggered by chronic exposure to the nitrogen dioxide and particulate matter from motor vehicle exhaust.[1] Per the coroner’s report, “Ella died of asthma contributed to by exposure to excessive air pollution.” [2]

Vehicle pollution contributing to an untimely death is all too common of a story. Commercial freight vehicles cause much of this damage because of their diesel engines, which are well-suited for hauling commercial loads but also create more hazardous pollution.

Diesel exhaust contains 40 cancer-causing substances as well as high levels of particulate matter, or fine soot.[3] As a result, diesel truck emissions are particularly harmful to human health, contributing to respiratory disease, hospitalization, cancer, and even premature deaths like Ella’s.[4] Motor vehicle exhaust causes an estimated four million new asthma cases in kids each year, or 11,000 per day, according to the World Health Organization.[5] Globally, transportation – cars, trucks, planes, trains, and ships – are responsible for around 360,00 deaths each year, where diesel-fueled vehicles are responsible for almost half (47 percent) of this premature death toll.[6]

Fortunately, technological advances mean cleaner alternatives are increasingly available. But further policy action is needed to speed their adoption.

MORE AMBITIOUS POLICY TO CAPITALIZE ON GROWING MOMENTUM

The International Energy Agency’s climate roadmap concludes zero-emission vehicle (ZEV) trucks have the fifth largest potential for greenhouse gas reductions of any technology, across all economic sectors.[7] Today, freight carrying ZEVs are on the rise, owing to growing technological maturity and steady market gains.[8] Globally, ZEV truck sales doubled in 2022, reaching 1.2 percent of sales,[9] and are expected to double again in 2023.[10]  Meanwhile, from 2021 to 2023, the number of ZEV trucks available on the market jumped from 200 to 350 models.[11] Such trends make a rapid transition to zero-emission trucks possible, but depend on policymakers creating stronger measures to support ZEV truck adoption.

Divergence of Zero-Emission Truck Sales with Current vs. Recommended Policy

Source: ICCT,[12] Commercial Drive to Zero,[13] International Energy Agency[14]

Current trends show ZEV truck sales falling short of the levels needed to fully realize their potential. Today, ZEVs are forecasted to grow to 9 to 13 percent of truck sales in 2030 as shown above. To reach our climate goals, global ZEV trucks sales should reach at least 30 percent, according to the International Energy Agency’s Net Zero Energy roadmap.[15] A 30 percent ZEV truck sales target has also been adopted by the Commercial Drive to Zero initiative, a coalition including 27 countries as well as major companies and financial institutions.[16]

Policymakers should aim for ZEV trucks to grow to at least 45 percent of 2030 sales, according to the respected International Council on Clean Transportation (ICCT).[17] ICCT recommended this level to members of the ZEV Transition Council commits members to an accelerated ZEV transition and includes nations representing more than half of global new vehicles sales.[18] The 45 percent ZEV truck sales target is recommended due to expected widespread “commercial availability” as well as “cost of ownership projections,” pointing to electric trucks being cheaper in the 2030s.[19]

CALIFORNIA AT THE FOREFRONT ON ZERO EMISSION TRUCK POLICY

California has been at the forefront on zero-emission truck policies over the past two years, spurred by growing opportunities for scaling ZEV trucks up and diesel’s continued public health toll. Though California has been a leader in clean transportation for decades, diesel exhaust is estimated to be responsible for 70 percent of the cancer risk for the state’s residents attributable to toxic air contaminants, causing around 1,400 premature deaths each year.[20]

California’s ZEV truck policy is state-of-the-art with the recent Advanced Clean Fleet policy, adopted in April of this year.[21] This policy sets a 2036 timeline for a 100 percent transition to zero emission technology in new truck sales.[22] Another Advanced Clean Fleets policy innovation is that it phases in increasing ZEV purchase requirement for commercial vehicle fleets, providing the demand-side of the ZEV transition while freeing up scare public revenue for other investments.[23]

WHAT NEXT

New vehicle sales standards are vital for an effective policy strategy. Considering the magnitude of the stakes and the opportunity, other major markets for new trucks need to increase their 2030 ambition, ideally targeting 45 percent ZEV truck sales in that year. Proposed policy in Europe would reach this level, requiring greenhouse gas reductions of 45 percent in 2030 and increasing to 90 percent in 2040.[24] The recent U.S. Environmental Protection Agency proposal is not quite as ambitious and is expected to lead to 2032 new trucks sales of 43 percent ZEVs.[25] Of the largest markets China’s adoption of heavy trucks has been fastest, but China has not set out quantitative targets for ZEV trucks so far.[26]

New vehicle sales standards on their own are insufficient and must be supported by a comprehensive portfolio of policies. We suggest a portfolio that includes consumer incentives, industry standards development, charging infrastructure adequacy, economic development, and equity considerations, such as ensuring smaller trucking operations can access ZEV technology.[27]

Development of a West Coast electric trucking corridor along the I-5 interstate from San Diego to British Columbia began in 2020. Recently, Tesla proposed a high speed truck charging corridor connecting the south Texas border (Laredo) with northern California (Freemont in the Bay Area) leveraging inflation reduction act incentives.

Inflation Reduction Act Spurs Plans for a Zero-Emission Trucking Corridor

Source: Bloomberg [28]

For officials, it can be challenging to formulate policy amidst technology and market change. Still, considering the available climate, health, economic, and equity benefits, policymakers should prioritize the accelerated transition for ZEV trucks to fully realize their potential.

 

Featured research:
[1] Sandra Laville, “Air Pollution a Cause in Girl’s Death, Coroner Rules in Landmark Case,” The Guardian, December 16, 2020, sec. UK news, https://www.theguardian.com/environment/2020/dec/16/girls-death-contributed-to-by-air-pollution-coroner-rules-in-landmark-case.
[2] Laville.
[3] Research Division, “Diesel Particulate Matter Health Impacts Summary,” California Air Resource Board, n.d., https://ww2.arb.ca.gov/resources/summary-diesel-particulate-matter-health-impacts.
[4] Research Division.
[5] Pattanun Achakulwisut et al., “Global, National, and Urban Burdens of Pediatric Asthma Incidence Attributable to Ambient NO2 Pollution: Estimates from Global Datasets,” The Lancet Planetary Health 3, no. 4 (April 1, 2019): e166–78, https://doi.org/10.1016/S2542-5196(19)30046-4.
[6] Susan Anenberg et al., “A Global Snapshot of the Air Pollution-Related Health Impacts of Transportation Sector Emissions in 2010 and 2015” (International Council on Clean Transportation, 2019), https://theicct.org/wp-content/uploads/2021/06/Global_health_impacts_transport_emissions_2010-2015_20190226.pdf.
[7] International Energy Agency, “Net Zero by 2050” (Paris: IEA, 2021), https://www.iea.org/reports/net-zero-by-2050.
[8] Global Commercial Vehicle Drive to Zero, “Zero-Emission Technology Inventory (ZETI) Data Explorer,” February 24, 2023, https://globaldrivetozero.org/tools/zeti-data-explorer/.
[9] International Energy Agency, “Global EV Outlook 2023” (Paris), accessed August 4, 2023, https://www.iea.org/reports/global-ev-outlook-2023.
[10] Colin McKerracher, “China’s Electric Trucks May Well Pull Forward Peak Oil Demand,” Bloomberg.Com, October 11, 2022, https://www.bloomberg.com/news/articles/2022-10-11/china-s-electric-trucks-may-well-pull-forward-peak-oil-demand.
[11] Global Commercial Vehicle Drive to Zero, “Zero-Emission Technology Inventory (ZETI) Data Explorer.”
[12] Arijit Sen and Josh Miller, “Emissions Reduction Benefits of a Faster, Global Transition to Zero-Emission Vehicles,” Working Paper 15-2022 (International Council on Clean Transportation, March 2022), https://theicct.org/wp-content/uploads/2022/03/Accelerated-ZEV-transition-wp-final.pdf.
[13] Commercial Drive to Zero, “Memorandum of Understanding on Zero-Emission Medium- and Heavy-Duty Vehicles,” December 20, 2021, https://globaldrivetozero.org/site/wp-content/uploads/2021/12/Global-MOU-ZE-MHDVs-signed-20-Dec-21.pdf.
[14] International Energy Agency, “Global EV Data Explorer,” May 23, 2022, https://www.iea.org/data-and-statistics/data-tools/global-ev-data-explorer.
[15] International Energy Agency, “Net Zero by 2050.”
[16] Commercial Drive to Zero, “Memorandum of Understanding on Zero-Emission Commercial Vehicles.”
[17] Sen and Miller, “Emissions Reduction Benefits of a Faster Transition to ZEVs.”
[18] “ZEV Transition Council,” International Council on Clean Transportation (blog), 2022, https://theicct.org/initiatives-partnerships/zev-tc/.
[19] Yihao Xie, Tim Dallmann, and Rachel Muncrief, “Heavy-Duty Zero-Emission Vehicles: Pace and Opportunities for a Rapid Global Transition,” ZEV Transition Council Briefing Paper (International Council on Clean Transportation, May 2022), https://theicct.org/wp-content/uploads/2022/05/globalhvsZEV-hdzev-pace-transition-may22.pdf.
[20] Research Division, “Diesel Particulate Matter Health Impacts Summary.”
[21] California Air Resource Board, “Proposed Advanced Clean Fleets Regulation Preliminary Language Revisions Workshop – Staff Presentation” (Sacramento, CA, February 13, 2023), https://ww2.arb.ca.gov/sites/default/files/2023-02/acfpres230213_ADA.pdf.
[22] California Air Resource Board, “Appendix A4. 2036 100 Percent Medium- and Heavy-Duty Zero-Emission Vehicle Sales Requirements, Preliminary Draft Regulation Order Advanced Clean Fleets Regulation” (Sacramento, CA, February 13, 2023), https://ww2.arb.ca.gov/sites/default/files/2023-02/230213prelim100sales.docx.
[23] California Air Resource Board, “Proposed Advanced Clean Fleets Regulation.”
[24] International Council on Clean Transportation, “Europe Proposes World-Leading Decarbonization Targets for Trucks and Buses,” International Council on Clean Transportation (blog), February 14, 2023, https://theicct.org/pr-europe-co2-standards-trucks-feb-23/.
[25] Coral Davenport, “E.P.A. Lays Out Rules to Turbocharge Sales of Electric Cars and Trucks,” The New York Times, April 12, 2023, sec. Climate, https://www.nytimes.com/2023/04/12/climate/biden-electric-cars-epa.html.
[26] Lingzhi Jin et al., “Opportunities and Pathways to Decarbonize China’s Transportation Sector during the Fourteenth Five-Year Plan Period and Beyond” (International Council on Clean Transportation, November 2021), https://theicct.org/wp-content/uploads/2021/12/China-14th-FYP-Report-v8-nov21.pdf.
[27] Chris Busch and Anand Gopal, “Electric Vehicles Will Soon Lead Global Auto Markets, But Too Slow To Hit Climate Goals Without New Policy” (Energy Innovation: Policy and Technology, LLC, November 3, 2022), https://energyinnovation.org/publication/electric-vehicles-will-soon-lead-global-auto-markets-but-too-slow-to-hit-climate-goals-without-new-policy/.
[28] “Tesla Wants to Build a Semi Truck-Charging Route from Texas to California,” Bloomberg.Com, August 1, 2023, https://www.bloomberg.com/news/articles/2023-08-01/tesla-semi-truck-charging-route-pitched-at-100-million.

The post Electric Trucks Are A Gamechanger If Strong Policy Leads The Way appeared first on Energy Innovation: Policy and Technology.

This piece was authored by Muhammad Abdullah, an 2023 summer Transportation Policy intern with Energy Innovation and Energy Innovation’s Chris Busch, Director Transportation and Senior Economist. Ella Kissi-Debrah was born, raised, and died a tragically early death in south London,…
The post Electric Trucks Are A Gamechanger If Strong Policy Leads The Way appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

This piece was authored by Paulina Vazquez Robles

The U.S. has some of the world’s best offshore wind resources, but we’ve barely begun to tap into them– to date, only seven offshore wind turbines are spinning in U.S. waters. But harnessing the country’s tremendous offshore wind potential is necessary to hit our climate targets while creating huge numbers of jobs and building a 21st century clean energy economy.

A new report– the 2035 and Beyond: Abundant, Affordable Offshore Wind Can Accelerate Our Clean Electricity Future report—examines offshore wind’s potential benefits and what we need to do to bring them to fruition. Investing in offshore wind could diversify power supply, bring economic growth, and cut climate pollution. In fact, by 2050 offshore wind could create up to 390,000 new jobs and supply 10 to 25 percent of the country’s electricity. But the next decade is critical for laying the groundwork for offshore wind’s growth.

 

Getting steel in the water

For an ambitious offshore buildout to be feasible, federal and state governments must support the growth of a domestic supply chain and facilitate offshore wind development. Ensuring access to the equipment needed to build an offshore wind farm and revitalizing ports to be suitable for offshore wind construction are key.

State governments can aid in the transportation and construction of offshore wind turbines by investing in ports, making them accessible for offshore wind. The offshore wind site identification process is also an area where federal and state governments can provide assistance. Facilitating the permitting process through additional funding and increasing baseline data collection before leasing can help provide certainty for developers, environmental organizations, and fisheries to support the industry’s growth.

Stages of timeline for offshore wind development as discussed in the 2035 and Beyond Offshore Wind Report by Energy Innovation

Soliciting stakeholder feedback will also play an important role in harnessing the country’s offshore wind resources. Federal and state governments should take deliberate steps to include nearby communities in the planning process. Coastal areas, Tribes, fishing groups, and environmental organizations, among others, should take advantage of opportunities to provide input on proposed offshore wind projects, and the federal government should provide funding to help underrepresented groups participate. Including these voices in the early stages of planning will help ensure successful projects while ensuring strong community support.

 

Training an offshore wind workforce

Offshore wind can also play an important role in a just energy transition by providing new opportunities for legacy fossil fuel workers. Federal and state governments can help facilitate this transition by creating training programs to provide the needed skills and knowledge to workers for offshore wind jobs. Offshore oil and gas workers can play an important role in offshore wind construction, as they have many transferable skills and knowledge needed to build ocean energy infrastructure.

Offshore wind career pathways include registered apprenticeships, particularly through unions, workforce readiness programs that partner with registered apprenticeships, community colleges, and transfer from the maritime and oil and gas industries from 2035 and Beyond Offshore Wind Report by Energy Innovation

Reaping offshore wind’s benefits

The benefits of establishing an offshore wind industry to the U.S are abundant. Investing in offshore wind would diversify U.S. electricity supplies, helping to create a more reliable and resilient grid and helping us meet our climate goals. As the demand for electricity grows, it’s important to have different sources of energy to reduce risks. Offshore wind complements solar and land-based wind well by generating significant power particularly at times when the sun is going down and consumers increase electricity use. It also blows strong and steady, with many offshore wind sites so productive that they can generate electricity at their maximum output more than half the time. This output is on par with or even exceeds that of many fossil fuel plants – in 2021, coal plants on average only produced their maximum power 46% of the time for land-constrained states on the East Coast, it also offers opportunities to harness clean energy that don’t otherwise exist.

Offshore wind also offers a generational economic opportunity, as it can create jobs for both local communities and in land-locked states where offshore wind components can be manufactured—there could be up to 390,000 offshore wind jobs by 2050. Much of that comes from building a domestic supply chain– dozens of new manufacturing facilities are needed to support a robust U.S. offshore wind industry.

Facilities required for domestic offshore wind manufacturing capacity needed to support 250,500 and 750 GW of offshore wind by 2050 from 2035 and Beyond Offshore Wind Report by Energy Innovation

Investing in offshore wind could help the U.S accomplish its energy goals, provide economic growth, and help to diversify power supply. However, to attain these benefits both state and federal governments need to support offshore wind development, and the coming decade is key for laying the foundation for a growing industry. Our economy will lose out on this opportunity and our climate goals are at risk if we don’t take action now.

The post Harnessing U.S. Offshore Wind Is A Generational Opportunity To Create Jobs And Cut Climate Pollution appeared first on Energy Innovation: Policy and Technology.

This piece was authored by Paulina Vazquez Robles The U.S. has some of the world’s best offshore wind resources, but we’ve barely begun to tap into them– to date, only seven offshore wind turbines are spinning in U.S. waters. But…
The post Harnessing U.S. Offshore Wind Is A Generational Opportunity To Create Jobs And Cut Climate Pollution appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

EV Fill Up Savings

With a significant uptake in electric vehicles (EVs) hitting the road, drivers will need to learn a new skill: determining how much it costs to fill up their EV. Unlike gasoline prices that are clearly displayed on roads nationwide, most people don’t know the cost of electricity in their state or city, let alone what a kilowatt hour is. Most EV fill up calculators require users to enter this information or enter the battery size of their vehicle. Additionally, gas-powered vehicles average over 400 miles on one fill up, while average EV range hit 291 miles last year. Comparing the cost to fill up a gas-powered vehicle to an electric vehicle isn’t an apple-to-apples comparison. The EV Fill Up Tool is designed to remove these barriers for a driver (or potential driver) of an EV.  The tool knows the average gasoline and electricity prices in a selected state. It also knows a vehicle’s average range on a fully charged battery or tank of gas. It will give the user a true comparison of what it costs to fill up a gas-powered vehicle when compared to EV alternatives.

The post EV Fill Up Savings appeared first on Energy Innovation: Policy and Technology.

With a significant uptake in electric vehicles (EVs) hitting the road, drivers will need to learn a new skill: determining how much it costs to fill up their EV. Unlike gasoline prices that are clearly displayed on roads nationwide, most…
The post EV Fill Up Savings appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

Energy Innovation partners with the independent nonprofit Aspen Global Change Institute (AGCI) to provide climate and energy research updates. The research synopsis below comes from AGCI James C. Arnott. A full list of AGCI’s updates is available online at https://www.agci.org/resources?type=research-reviews.

Image by czu_czu_PL via pixabay

The U.S. Surgeon General recently made a stunning announcement proclaiming a national epidemic of loneliness and isolation. Alongside his pronouncement came a report with a chilling takeaway that lacking social connection can equal the health impacts of smoking 15 cigarettes a day. The report documents alarming trends: loneliness among young people has increased every year since 1976, and Americans across the age spectrum spend 24 hours more per month alone than they did in 2003.

Beyond health impacts, such isolation can erode a community’s capacity to build social capital and cohesion, vital capacities for responding to the shocks of extreme weather and climate-related disasters. Surprisingly, the words “climate” or “climate change” do not appear even once in the Surgeon General’s report, even though it explores wide-ranging implications of and solutions for social isolation, including “natural hazards.” Several recent social science and interdisciplinary studies, however, have started to explore aspects of this connection.

Late last year, two health researchers from the University Medical Center Hamburg-Eppendorf, André Hajek and Hans-Helmut König, reported an association between climate anxiety and perceived social isolation. They surveyed over 3,000 people living in Germany, using questions designed to test levels of loneliness, isolation, and climate anxiety. Respondents also provided demographic and lifestyle details, such as age, gender, location, and alcohol/smoking habits. When these factors are included, the survey data analysis found an association between climate anxiety and both loneliness and social isolation. Higher levels of loneliness and isolation were significantly associated with higher levels of climate anxiety for the overall population and for those between the ages of 18–64.

Interestingly, the study found no significant association for respondents aged 65–74, and the actual magnitude of association (i.e., effect size), even when statistically significant, was low to moderate. Furthermore, while the study demonstrated a correlation, it was unable to explain whether loneliness breeds climate anxiety, or whether climate anxiety or some other factor may be driving loneliness and isolation.

Even with these limitations, the extent to which climate anxiety might depress action on climate solutions—thereby fueling a vicious, self-perpetuating cycle—raises concerning questions about the broader relationship between social disconnection and environmental action.

Social Connection And Environmental Action

To get at this question, two Australian psychologists, Madelin Duong and Pamela Pensini of Monash University, examined the relationship between connectedness and pro-environmental behavior (PEB)­­––the actions an individual may take to try to minimize or reverse negative impacts on the environment. Their work, which was published in the journal Personality and Individual Differences, draws on an online survey of 632 Australian adults who self-rated their connectedness to their community, nation, all humanity, and nature. Respondents also answered 22 questions about whether they had performed various kinds of PEBs in the previous six months as well as 10 items aimed at understanding respondents’ underlying orientation toward “prosocial behaviors” (e.g., one item read “Having a lot of money is not important to me.”).

Based on the responses, the authors constructed a statistical model to predict the likelihood of an individual performing PEBs (see Figure 1). They found that prosocial tendencies (described in Figure 1 as “Honesty-Humility”), along with connectedness to nature, community, and humanity, are significant positive predictors of PEB; that is, the more self-reported feeling of connectedness, the higher probability a respondent would have reported PEBs. Connectedness to nature was the largest positive predictor, but connectedness to community was also significant. Interestingly, connectedness to nation was shown to be a negative predictor, even though it was positively associated with prosocial behavior.

This study reinforces an intuition many environmental advocates may already hold––that a meaningful connection to community or nature provides individuals a compelling sense of relevance or motivation to act. The survey results suggest that connection to one’s nation may not actually facilitate, or could even hinder, PEB. While these interpretations are interesting, the study design and context mainly construct a framework of PEB that requires further testing beyond the confines of a single online survey in one country.

Figure 1 The model describing the relationship between Honesty-Humility and Pro-Environmental Behaviour (PEB) mediated by Connectedness to Nature, Connectedness to Humanity, Connectedness to Community, and Connectedness to Nation. Alpha and beta (a, b) values indicate the relative magnitude of connection between constructs, and p-values evaluate their statistical significance.

Social Factors That Shape Climate Vulnerability

How individuals are connected to their community and the attributes of community cohesion also affect how people are impacted by natural, or increasingly human-made, climate disasters. A recent U.S. multi-author study in Environment International led by P. Grace Tee Lewis of Environmental Defense Fund makes explicit the social and community factors that shape widely varying levels of climate vulnerabilities in the United States. Creating a “Climate Vulnerability Index” (CVI), the authors build on efforts dating back to a landmark 2003 paper led by Susan Cutter, which first attempted to map the social factors contributing to environmental hazard vulnerability (Cutter, Boruff, & Shirley, 2003). That paper created the first ever Social Vulnerability Index (SoVI), which explicitly considered how variables like socioeconomic status, family structure, and local infrastructure shape how communities experience the physical impacts of a disaster.

Tee Lewis and colleagues draw upon an updated version of the SoVI and numerous other datasets to formulate their CVI, which is intended to help pinpoint, down to the census tract level, opportunities for investing in historically low-income communities, such as through the Biden administration’s Justice40 initiative, which prioritizes such regions to receive at least 40% of the benefits of federal climate and clean energy investments.

The CVI incorporates 200 health, socioeconomic, infrastructure, and climate risk variables, including some specifically related to social connectedness, such as the number of civic and social organizations in a community and self-reported mental health. When these factors are incorporated, even areas that expect relatively lower physical impacts from climate change, such as many parts of Alaska, can still experience harm based on their baseline vulnerabilities.

Figure 2. Maps of overall CVI and components for all 50 US states and District of Columbia (n = 3,221 counties). Spatial distribution of county median CVI score for (a) all 184 indicators (overall index score), (b) limited to Baseline Vulnerability domains (n = 139 indicators), and (c) Climate Change Impact indicators (n = 45 indicators), and individual category domains (d-j). Higher index scores correspond to higher vulnerability or risk. Source: Tee Lewis et al., 2023.

Integrated geospatial datasets like the CVI are limited by relying solely on datasets that can be uniformly applied (and even then, this study relies on sparse data for Alaska and Hawaii). But the CVI can help pinpoint potential social drivers of vulnerability in a specific context and thus inform more tailored capacity-building actions. For instance, a look into the top three most vulnerable census tracts of Harris County (encompassing Houston, Texas) express similarly high levels of climate variability but owe their vulnerability to different combinations of health, socioeconomic, and climatic stressors (Figure 3).

Figure 3 Census Tract Level Climate Vulnerabilities in Harris County, Texas. Colors assigned to each census tract indicate the overall CVI score. The top three ranking census tracts are highlighted by their FIPS code, score, and percentile rank, along with the ToxPI visualization of the category domain scores. For the top ranked census tract, the scores for subcategory components within each category domain are also visualized using ToxPI. Source:

Advancing Connection

Several recent studies featured here suggest that the impacts of loneliness and social disconnection may have direct relevance for our individual perceptions and actions on climate change. Yet there are real limitations to how we measure, collect, and analyze this information to draw conclusions. These studies simply provide a starting point to consider how we might link concern about loneliness and isolation, among other social variables, to climate action.

Doing so provides a real opportunity to consider the many opportunities for multi-solving, where one strategy or a combination of strategies simultaneously address multiple problems. Whether aimed at coinciding root causes or solutions with multiple co-benefits, multi-solving may reveal novel configurations of ideas or interest groups, or new ways to deploy solutions more efficiently. In the case of social disconnection amid a climate crisis, for instance, a philanthropist who wants to help restore local community vitality could consider how such an interest might dovetail with local pro-climate solutions.

The Surgeon General’s report identifies six pillars to advance social connection:

Strengthen social infrastructure in local communities
Enact pro-connection public policies
Mobilize the health sector
Reform digital environments
Deepen our knowledge
Cultivate a culture of connection

Taken at face value, these provide many jumping off points to explore what kinds of resilient, well-informed, and wellbeing-enhancing climate solutions could also help restore connection and cohesion within our nation’s communities.

 

Featured Research
Cutter, S., Boruff, B., & Shirley, W. (2003). Social Vulnerability to Environmental Hazards. Social Science Quarterly, 84(2). Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/1540-6237.8402002/full
Duong, M., & Pensini, P. (2023). The role of connectedness in sustainable behaviour: A parallel mediation model examining the prosocial foundations of pro-environmental behaviour. Personality and Individual Differences, 209(March), 112216. https://doi.org/10.1016/j.paid.2023.112216
Hajek, A., & König, H. H. (2022). Climate Anxiety, Loneliness and Perceived Social Isolation. International Journal of Environmental Research and Public Health, 19(22). https://doi.org/10.3390/ijerph192214991
Tee Lewis, P. G., Chiu, W. A., Nasser, E., Proville, J., Barone, A., Danforth, C., … Craft, E. (2023). Characterizing vulnerabilities to climate change across the United States. Environment International, 172(November 2022), 107772. https://doi.org/10.1016/j.envint.2023.107772

The post Loneliness, Isolation, And Climate Solutions: Is There A Connection? appeared first on Energy Innovation: Policy and Technology.

Energy Innovation partners with the independent nonprofit Aspen Global Change Institute (AGCI) to provide climate and energy research updates. The research synopsis below comes from AGCI James C. Arnott. A full list of AGCI’s updates is available online at https://www.agci.org/resources?type=research-reviews. The…
The post Loneliness, Isolation, And Climate Solutions: Is There A Connection? appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

This article is the first in a series entitled “Real Talk on Reliability,” which will examine the reliability needs of our grid as we move toward 100% clean electricity and electrify more end-uses on the path to a climate stable future. It was written by Michelle Solomon, a senior policy analyst in the Electricity Program at Energy Innovation.

The beginning of summer brings with it sunshine and vacations for many, but increasingly these warm months are accompanied by extreme heat, a symptom exacerbated by climate change. As a result of widespread heat-waves, people and businesses crank their air conditioners for relief, increasing electricity demand and adding stress to the grid. At the same time, this electricity is getting cleaner – in 2022 the United States generated 40 percent of its electricity from carbon-free sources. Fifteen percent was generated from wind and solar energy, both of which are now the cheapest sources of electricity, and the fastest growing.

To help prepare the nation’s electricity grid for the season ahead, the North American Electric Reliability Corporation (NERC) —the non-profit regulatory authority whose mission is to assure the effective and efficient reduction of risks to the reliability and security of the North American grids—recently released its annual summer reliability assessment.

Their report examined both the United States and Canada’s ability to meet expected summer electricity demand, including an evaluation of the risks associated with wildfires and drought, and provided short-term recommendations on how to overcome any potential shortfalls.

NERC’s findings follow a trend of the last several years, highlighting that while electricity supply is sufficient across the country under normal summer conditions, during extreme heat several regions are at risk for supply shortfalls. NERC cited the retirement of aging and expensive fossil fuel power plants as a factor in this dynamic, but also found that “increased and rapid deployment of wind, solar, and batteries make a positive difference this year,” highlighting that one of the most important tools bolstering reliability is adding new, clean generation capacity.

As we move toward a cleaner electricity system, reliability is of increasing focus for policymakers, utilities, system operators, and electricity consumers alike, and for good reason – lives depend on the power staying on.

Changing reliability considerations with the energy transition

Our grid is undeniably in transition. The shift to clean electricity and electric end-uses is picking up pace in response to federal policy and incentives, state clean energy goals, and utility leadership. In 2022 wind and solar accounted for 74 percent of new utility-scale generating capacity, while new natural gas capacity made up only 25 percent. Battery storage has also seen a meteoric rise with the addition of 4 gigawatts (GW) across the country last year in a near doubling of storage capacity. This fast-growing addition of renewables and storage is welcome as electricity demand increases and uneconomic fossil fuel plants retire. Other demand-side resources and operational changes are also in the toolbox as grid operators work quickly to manage the transition without impacting grid reliability, safety, and affordability.

With all of these changes to the physical system, we need to also evolve the way we think about reliability. Ric O’Connell, Executive Director of GridLab, highlights that one of the biggest misconceptions in the energy transition is the need for baseload power, or plants that are expensive to build but cheap to operate and therefore run almost all the time. O’Connell explains that “we know we need a portfolio of resources on the grid that, working together, can provide resource adequacy, or energy when we need it, but that portfolio does not necessarily need to include baseload or 24/7 resources.”

While the shift to this new paradigm presents challenges, we are gaining confidence in the reliability of a clean grid. Previously there was “trepidation about even adding small amounts of weather-dependent power sources like wind and solar to the grid,” said O’Connell. “Now, large, sophisticated grids in the Midwest, Texas, and California regularly run on a 70 percent or higher share of wind and solar for hours at a time.” We have proven examples of smaller grids running at even higher percentages of weather dependent resources – the island of Kauai has been able to run on 100 percent renewable energy for at least nine hours at a time. Multiple studies show that the U.S. grid can run on up to 80 percent clean electricity with technology that is available today.

To build this portfolio, utilities, regulators, and grid operators will need to be able to accurately evaluate each resource’s contribution to resource adequacy and operational reliability. As Federal Energy Regulatory Commissioner Allison Clements recently said, “Reliability discussions will lead to the more cost-effective solutions if they start with the data-driven analytical work required to understand and quantify the problem that we are aiming to solve.”

The nuts and bolts of reliability

While the grid shifts from a still fossil-heavy system to one that is powered by clean, carbon-free electricity generation, there are three questions we need to answer. First: can a clean, carbon-free grid offer the same or better reliability we have today? Second: can the grid be reliable as we are transitioning? And third: can a clean grid meet the demand from more electrified end-uses without compromising reliability? This series will aim to demonstrate that the answer to these questions is “yes”, but not without the correct planning and policies in place.

Before answering the above questions, it’s helpful to understand the basics of electricity reliability—a term used often, but not always consistently. There are four separate but interconnected pieces to ensuring that power from the grid is reliable. First is resource adequacy, which means having enough energy to meet demand—either in the form of supply-side generation or demand-side distributed resources. Second is reliable operation of the grid, including generation, transmission, and distribution of electricity—the monitoring and control of the system, balancing energy supply to match the demand and ensuring transmission lines and facilities stay within their safe operating limits. Third is resilience, which is the ability of the electricity system and other connected systems – like transportation, health, and safety – to ride-through or bounce back quickly in the face of outages. Connected to resilience is grid hardening, which refers to a myriad technology and operational solutions that help the grid withstand these major events without disruption.

Reliability is a characteristic of the whole electricity system, to which individual resources contribute. Every source of electricity has different characteristics that should complement each other in a balanced portfolio. With respect to resource adequacy, no resource is available 100 percent of the time. For example, solar and wind output vary over the course of the day, year, and with weather conditions, where batteries and transmission and distribution (T&D) lines move energy from when and where it is generated to when and where it is needed. Large-scale nuclear plants are built to provide consistent power but are difficult to ramp up or down to adjust supply when needed. Gas and coal plants are typically considered “dispatchable” or available on demand, but can suffer outages, particularly correlated outages in extreme weather events as seen by recent Winter Storms Uri and Elliott. Maintaining a reliable grid requires valuing every resource’s contribution accurately, and building a generation portfolio that balances supply and demand throughout the day and year.

When electricity supply and demand are matched, the electricity flows through the grid at a constant frequency and voltage but as supply and demand vary throughout the day, frequency and voltage can begin to fluctuate. Grid services are the contributions that different resources provide to maintain stability such as frequency response, voltage regulation, and more. Historically, spinning turbines powered by gas, coal, and nuclear helped ensure stability, though new solutions can compete to fill this role as public acceptance, policy, finance, and economics push conventional resources to retire. The ability of wind, solar, and batteries to provide grid services compared to spinning turbines is detailed in the below figure from Milligan Grid Solutions.

Grid services provided by inverter-based and synchronous resources. Source: Milligan Grid Solutions.

NERC, electricity providers, regulators, and system operators share responsibility for each aspect of reliability. NERC assesses national resource adequacy, sets operational reliability standards, monitors compliance with those standards, and can penalize non-compliant reliability authorities. Electricity providers plan their future resource mix and in the West and Southeast operate their bulk power systems.

In order to maintain reliability and ensure the transition goes as smoothly as possible, policymakers will need to remove barriers to building new, clean resources and connecting them to the grid. With nearly double the current U.S. generating capacity just waiting in interconnection queues across the country, new transmission lines are the “biggest barrier to adding sufficient new clean energy,” according to O’Connell, and “policy plays a critical role in how we plan, permit, and pay for transmission. Good policy means we can get the transmission built in the timeframe we need, so clean energy can come online and maintain reliability.” Additional Federal leadership is essential, but while the recent debt negotiations considered several transmission reform policies, the ultimate outcome lacked substantive action. Distribution system upgrades needed to support more electrified end-uses, such as heat pumps and electric vehicles, can also be hindered by regulatory and utility processes if they aren’t anticipated.

A clean, reliable grid capable of supporting mutual goals of decarbonization and electrification is possible, but it won’t happen on its own. The rest of this series will cover deep dives on key topics in grid reliability including: the future of reliability services with clean energy, supply- and demand-side approaches to keeping the grid reliable, the impacts of extreme weather and climate change, and the need for clean, firm power.

The post It’s Time To Rethink Grid Reliability appeared first on Energy Innovation: Policy and Technology.

This article is the first in a series entitled “Real Talk on Reliability,” which will examine the reliability needs of our grid as we move toward 100% clean electricity and electrify more end-uses on the path to a climate stable…
The post It’s Time To Rethink Grid Reliability appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

Energy Innovation partners with the independent nonprofit Aspen Global Change Institute (AGCI) to provide climate and energy research updates. The research synopsis below comes from AGCI Program Director Emily Jack-Scott and AGCI Program Associate Devan Crane. A full list of AGCI’s updates is available online at https://www.agci.org/solutions/quarterly-research-reviews.

In some parts of the world, spring brings rains, warmer temperatures, singing birds, and flowering blooms. We tend to think of spring’s arrival as something that just “happens,” but the spring awakening in the plant world is governed by the finely tuned relationship between plants, animals, and Earth’s weather and climate. Cues like precipitation, temperature, day length, and wind induce life events in plants such as bud burst, leaf out, flowering, pollen dispersal, and leaf senescence.

Climate change-induced warmer temperatures are causing many plants in temperate climates to exhibit spring behavior, like blooms and budburst, much earlier in the year. This change in the timing of the annual cycle of plant developmental stages, or phenology, in turn produces massive ripple effects that impact human health, cultural practices, farmer livelihoods, and food security.

Figure 1. The average January-March global air temperatures for select regions (a), and the historical timing of blooms of different plants in those regions (c-g). The thick gray lines represent the ten-year moving average for each plant, shifting earlier in the year in conjunction with a great acceleration in warming average spring temperatures since 1950 (highlighted in yellow). Source: Vitasse et al. 2022.

The influence of climate change on plant phenology and increased pollen loads has significant implications for human health, particularly for individuals with asthma and allergies. Pollen-related medical bills in the United States alone have exceeded $3 billion annually.

Changing phenology also impacts plants with cultural and medicinal significance, some of which have been used for centuries to nourish the body, heal wounds, or aid in ceremonies. With optimal growing conditions rapidly favoring higher latitudes and elevations, plant populations unable to migrate quickly can decline at alarming rates and even face the threat of extinction. This is the case for dozens of medicinal plants in Nepal, where 83 percent of the population relies primarily on herbal remedies. The quality and medicinal properties of such plants can be impacted as well by suboptimal growing conditions.

Shifting plant phenology also affects the distribution and productivity of major food crops. Current research and modeling efforts increase our understanding of plant phenology and allow for informed decision-making and adaptation strategies.

Impacts of Changing Phenology on Food Crops

Recent studies have shown that the changing climate alters crop phenology, ultimately affecting crop yields. Warming temperatures are projected to cause global reductions in future crop yields, though the extent of losses will vary by crop and region and depend on whether adaptation strategies are applied. Elevated temperatures are a primary mechanism through which climate change affects crop phenology. As temperatures warm, spring begins earlier in many temperate climates, lengthening the growing season for some crops and shortening the growing season for others.

Development phases like anthesis, the flowering phase of a plant, are also affected by climate-driven phenological shifts. Flowering plants require a certain amount of daily light exposure, or photoperiod, to induce flowering. So while plants may sprout earlier in the year due to warmer temperatures, they still require the same photoperiod to flower, as sunlight is determined by the rotation of the Earth and remains relatively unchanged from year to year. Crops that mature earlier in the year, out of alignment with optimal photoperiods, can be stalled in their development. Overwintering crops sown in the fall may see a longer growing season due to earlier spring or warmer winters and, in turn, may not experience the number of cold hours they need to induce the next phenological phase. When farmers sow their crops earlier to counter earlier warming, all subsequent phases of plant growth and development are affected. One way farmers can realign plant growth with phenological shifts is to choose cultivars with adapted growing requirements, such as high heat tolerances, improved drought tolerance, or later flowering or maturity.

In a 2022 article in Forest and Agricultural Meteorology authors Jie Zhang and Yujie Liu analyze the impacts of climate change and adaptive management on various phenological phases of cash crops like peanuts, canola, and sorghum. These crops are in increasingly heavy demand in places like China, where rising incomes are leading to dietary shifts that favor their production.

Zhang and Liu grouped phenophases into growth periods for three cash crops: a) the whole growth period from when a seed is planted through its maturation into a harvestable crop; b) the vegetative growth period of the plant before it reaches the reproductive stage; and c) the reproductive growth period, including flowering, pollination, and development of a seed, nut, or fruit. The influence of climate change on phenological shift varies across the different crops (see Figure 2). The maturity date was delayed for sorghum and canola, while it advanced for peanuts. Adaptive management strategies can offset the effects of climate change positively in each crop at different stages.

Figure 2. “Changing trends of phenology caused by climatic factors. Trends are broken down by each crop’s phenological phases and the change of day + or – per year. Central horizontal line: median; white dots: average; box limit: 25th and 75th percentiles; whiskers: minimum and maximum values. WGP – Whole Growth Period, RGP – Reproductive Growth Period, VGP – Vegetative Growth Period – phenophases within each growth period vary by crop.” Source: Zhang and Liu 2022.

How Farmers Are Adapting to Changing Phenology

So how are farmers responding to the impacts of such dramatic changes in plant phenology?

In a 2023 review paper published in Environmental Research Climate, Asif Ishtiaque comprehensively reviewed published scientific papers on how U.S. farmers are adapting to climate change and preparing for the future; the paper also included farmer perspectives on whether to adapt at all.

Ishtiaque identified five types of adaptation strategies: water management, crop management, nutrient management, technological management, and financial management. While the reviewed studies focused on adaptation to various climate change impacts (e.g., drought, flooding, other hazards), many of the strategies identified have relevance for adapting to the changing phenology of crops.

Ishtiaque found that U.S. farmers are already adapting by planting different crop varieties (or cultivars), diversifying and rotating which crops are grown, shifting planting dates, improving soil health and applying fertilizers, adopting new irrigation practices, trying out new technologies, and investing in crop insurance. These adaptations mirror the strategies Zhang and Liu refer to in their analysis on phenological shifts of cash crops amid adaptive management.

Often, farmers adopt multiple strategies at once to adapt to changing plant phenology. For instance, a farmer may plant earlier in the season; plant a new, hardier cultivar better adapted to a changing growing season; install hail nets to protect the crop during earlier growing conditions; and invest in crop insurance to mitigate potential yield losses from droughts or other hazards stemming from new planting dates and crop varieties.

Some articles in Ishtiaque’s study also underscore the challenge of adaptation. Research finds that U.S. farmers often have taken a reactive approach to adapting to changing phenology and climate impacts more generally. Many U.S. farmers are not connected to, inclined to access, or trained to use climate information about future conditions that could inform longer-term planning. Rather, they respond to weather and climate impacts after they occur.

Farmers’ adoption of adaptation strategies also has been heavily tied to whether they believe climate change is human caused and happening now. In addition, farmers with a high level of “techno-optimism” are slower to implement adaptations, believing that technological solutions alone will be sufficient to mitigate crop losses.

Farmers who are disconnected from climate information, or disinclined to believe it, run a greater risk of jeopardizing their own long-term livelihoods as well as future food security.

Representing Adaptations on Farms in Models

One takeaway of Ishtiaque’s review is the need to better document adaptation strategies. This same conclusion is emphasized in a 2023 paper published in Current Opinion in Environmental Sustainability by Aidan Farrell, Delphine Deryng, and Henry Neufeldt on the extent to which crop models currently capture crop adaptations on the ground.

Farrell and colleagues found that crop yield models can represent a few adaptations, like improved fertilizer and water management or planting timelines relatively well, but the vast majority of adaptation options available to farmers are not included in models sufficiently, if at all (see Table 1). In large part, this is because many agricultural models are process driven and require large volumes of data to represent detailed biophysical climate processes and factors that affect crop yields, such as photosynthesis rates; soil, water, and nutrient dynamics; heat and water stress; evapotranspiration; and CO2 effects.

When data is limited, as is the case for many adaptation strategies that are adopted on small scales, there simply isn’t enough information to include the full array of adaptation options available in process-driven models. So these models often can’t analyze scenarios that accurately portray the diversity of adaptations available to farmers, let alone their efficacy in mitigating climate impacts on specific crop yields.

Table 1. “On-farm adaptation options and the frequency with which they are included in modelling studies.” Source: Farrell et al. 2023.

The underrepresentation of farm adaptations in models is important because model scenarios are one of the ways policymakers and other decision-makers assess and prepare for the impacts of climate change on our food systems. Also, using models that do not consider human responses and adaptations can overestimate the impacts of climate change on crops.

One way to address this challenge is to improve data availability on the implementation and evaluation of different adaptation strategies actively used on farms. This would require interdisciplinary collaboration and a more standardized data-gathering process when adaptations are implemented on farms. Big data and machine learning may prove critical in surmounting this barrier.

Another solution could be to include results from other model types alongside the results from process-based models. Integrated assessment models, for example, have more flexible data requirements and modeling approaches, so they can represent a wider array of adaptation strategies, farmer management practices, crop phenological phases and development parameters, and dynamic planting calendars.

Including these parameters in crop models is critical because they can drastically change yield scenarios. Figure 3 shows the benefits to global yield when adaptation strategies are used. “All crops saw increased yields with adaptation strategies and the highest yields were seen when both sowing and cultivar adaptation are combined (except for wheat).”

Figure 3. “Benefits of sowing and cultivar adaptation on global crop yields under the RCP6.0 climate model projections for 2080-2099. Benefits on global yields are reported for all crops aggregated and for each individual crop, along with the uncertainty under different climate scenarios. The four adaptation scenarios indicate different levels of adaptation (adapt.): timely adaptation, sowing dates and cultivars adapted as the climate is changing (2080−2099); cultivar adaptation, sowing fixed at the reference level, only cultivars adapted as in timely adaptation; sowing date adaptation, only sowing dates adapted as in timely adaptation, cultivars fixed at the reference level; delayed adaptation both sowing dates and cultivar adapted but with 20-years delay, to 2060−2079 climate. The global yield of an individual crop is computed as the area- weighted mean yield across all grid cells growing that crop. In grid cells where adaptation of growing periods returned either no benefit or maladaptation (yield difference is equal or larger zero) yield losses were considered equal zero. Bars represent the mean across GCMs (n = 4 GCMs), whiskers display the range across GCMs, and gray symbols refer to individual GCMs.” Source: Minoli et al. 2022.

Future Opportunities

Several of the study authors mentioned here have proposed priority areas for future inquiry and research application.

Ishtiaque advocates for improved study of under-modeled adaptation strategies. In the meantime, he emphasizes that as policymakers and decision-makers consider on-farm adaptation strategies, it is critical they not minimize the potential of not-yet-to-scale options to be included in models. Farrell and colleagues argue that many of the underrepresented adaptation strategies (such as agroforestry, soil conservation, and crop diversification) have promise and should not be overlooked by policymakers and climate adaptation professionals when giving farmers climate information and guidance on how to plan for food security.

Ishtiaque also calls for better analysis of how farmers’ race and ethnicity factors into their adoption of adaptation strategies, as race and ethnicity greatly influence farmers’ relationships with and trust of public agencies, their access to information, and their access to lines of credit for adaptation investments. Black farmers disproportionately have marginalized land that is more hazard prone, especially in a changing climate.

For all farmers, the financial implications of reactive versus proactive adaptation strategies need to be better understood. Farmer perspectives and psychological barriers should also be better researched and considered as government agencies work to develop messaging and strategies to share information on future climate conditions.

Featured research:
A.D. Farrell, D. Deryng, and H. Neufeldt, “Modelling Adaptation and Transformative Adaptation in Cropping Systems: Recent Advances and Future Directions,” Current Opinion in Environmental Sustainability 61 (2023): 101265.
J.A. Franke et al., “Agricultural Breadbaskets Shift Poleward Given Adaptive Farmer Behavior Under Climate Change,” Global Change Biology 28, no. 1 (2022): 167-181.
Ishtiaque, “US Farmers’ Adaptations to Climate Change: A Systematic Review of the Adaptation-Focused Studies in the US Agriculture Context,” Environmental Research: Climate 2 (2023): 022001.
Minoli et al., “Global Crop Yields Can Be Lifted by Timely Adaptation of Growing Periods to Climate Change,” Nature Communications 13, no. 1 (2022): 7079.
Vitasse et al., “The Great Acceleration of Plant Phenological Shifts,” Nature Climate Change 12, no. 4 (2022): 300-302.
Zhang and Y. Liu, “Decoupling of Impact Factors Reveals the Response of Cash Crops Phenology to Climate Change and Adaptive Management Practice,” Agricultural and Forest Meteorology 322 (2022): 109010.

The post Spring’s Early Bloom: Farmers’ Adaptations And Keeping Crop Models In Sync appeared first on Energy Innovation: Policy and Technology.

Climate change-induced warmer temperatures are causing many plants in temperate climates to exhibit spring behavior. This change in the timing of plant development produces ripple effects that impact health, culture, livelihoods, and food security. New research is increasing our understanding of plant phenology and allowing for informed decision-making and adaptation strategies.
The post Spring’s Early Bloom: Farmers’ Adaptations And Keeping Crop Models In Sync appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

Energy Innovation partners with the independent nonprofit Aspen Global Change Institute (AGCI) to provide climate and energy research updates. The research synopsis below comes from AGCI Community Science Manager Elise Osenga. A full list of AGCI’s updates is available online at https://www.agci.org/solutions/quarterly-research-reviews.

California is currently living out the old adage, “It never rains but it pours.” Following years of severe drought across the western United States, atmospheric rivers began sweeping into the state last December, bringing intense rain and snowfall. Throughout the new year and into the following months, storms continued to slam both Northern and Southern California with intense precipitation.

This March, rainstorms caused flooding, mudslides, and a levee breach at low elevations. In California’s Sierra Nevada range, snowpack reached as much as 269 percent of “normal” in some locations by the end of February (compared to 1991-2020), with extreme snowfall collapsing structures and closing highways. Concern is also rising that this year’s deep snow could produce even more intense flooding as warmer spring temperatures create snowmelt runoff and precipitation switches from snow to rain at higher elevations.

This is a far cry from 2022, when California recorded its driest January, February, and March in over a century, and drought records were set across the western U.S. Similar trends are observable around the world. The European Alps have seen declining average annual snow cover since 1971—a trend unprecedented in the last 600 years. Multi-year droughts have also created challenges in South America (although heavy snows in July 2022 brought some relief to the Andes in Chile and Peru).

Snowpack is of utmost concern in mountain communities, where it affects everything from flower blooms to wildlife survival and from recreational economies to municipal and agricultural water supplies. As the impacts of climate change intensify, experts predict fundamental shifts in mountain hydrologic cycles, with consequences for snow-reliant people and ecosystems. Understanding what those alterations will look like is a complex challenge. California can serve as a case study to help connect the dots between rising temperatures and regional atmospheric patterns and to reconcile forecasts of a future that brings both more extreme droughts and more extreme floods.

Atmospheric rivers and megafloods in a high-risk future

One of the largest determinants of winter precipitation is the season’s pattern of atmospheric rivers. Corridors of air that contain high amounts of water vapor, atmospheric rivers flow from near the equator to higher latitudes, typically bringing high wind speeds and heavy rainfall or snow—especially when they encounter mountainous terrain.

Recent research from Huang et al. (2022) warns that climate change impacts to atmospheric rivers in the Pacific could combine with a warming-driven shift in precipitation falling as rain rather than snow to increase the likelihood of massive flooding in California. Running ARkStorm 2.0, a disaster scenario program for California, and using various future climate conditions, Huang et al. found that for each 1 degree Celsius increase in global atmospheric temperatures, California saw a rapid increase in the likelihood of a historic megaflood on par with California’s Great Flood of 1861-1862 (Figure 1).

Warmer temperatures and increased flood risk are linked by both the intensity of precipitation events and whether the precipitation falls as rain versus snow. Warmer air can hold more water vapor than cool air, and this study found that as the atmosphere warms, more atmospheric rivers will carry moisture loads that can generate extreme precipitation in the western U.S.—a finding supported by other studies, including Kirchmeier-Young and Zhang (2020), Michaelis et al. (2022), and Corringham et al. (2022).

Furthermore, flood risk associated with intense precipitation events may be regionally compounded by the impacts of warmer temperatures. Huang et al. found warming temperatures were associated with a greater proportion of the increased precipitation falling as rain rather than as snow. Under a high-emissions climate change trajectory, the probability of a megaflood on par with the Great Flood of 1861-1862 more than triples by 2060, marking a 600 percent increase in risk.

Reconciling a future that is both wetter and drier

How does a more flood-prone future square with studies that predict a drier future for California and elsewhere and the oft-discussed “aridification of the American West”? Again, atmospheric rivers and regional warming play a role.

Research from NASA indicates that although warmer air temperatures may contribute to wetter and more intense atmospheric rivers, the total number of atmospheric rivers bringing precipitation (of any quantity) to the western U.S. may decrease—meaning fewer significant, water-providing storms. When meteorological droughts (droughts caused by below average precipitation) do occur, they’re likely to be exacerbated by the warming climate, with impacts to both summer and winter hydrologic cycles.

So what will these changes mean for future snowpack? A recent study by Weider et al. (2022) projects snowpack volume could decline over the coming century across the Northern Hemisphere. This study assessed potential changes to seasonal snow cycles in multiple mountainous regions by using a set of 40 simulations from a global climate model to better understand the range of possibilities. Comparing projections for 2070-2099 to a 1950-1969 baseline, the researchers classified areas where greater than 3 cm of snow were present for more than three months at a time.

They found that warmer future climate scenarios were associated with thinner and less widespread snowpack by the year 2100, although changes to snowpack were not evenly distributed across the hemisphere. This decline in snowpack was in turn associated with a decrease in the number of days with freezing temperatures, leading to a shorter snow season. Additionally, Weider et al. found a shift in timing, with more runoff and peak streamflow earlier in the calendar year and a greater percentage of snow melt occurring before the peak snow water equivalent (SWE) for previous decades (Figure 2). These timing changes create challenges for water management.

Figure 2. These maps from Weider et al. (Figure. 4 in the paper) compare modeled changes in the amount of winter snow melt occurring before peak SWE (a proxy for date of peak snowpack) from 2000 to 2100 [snow melt fraction–left] and the point in the year at which 50 percent of annual streamflow has occurred [change center timing-right]. By 2100, a larger percentage of snow melt occurs earlier in winter, and runoff shifts to earlier in the year.

Looking ahead to 2100, a study by Rhoades et al. (2022) also projects declining snowpack within the American Cordillera, a series of mountain ranges across western North and South America that includes California’s Sierra Nevada. The study compared high-resolution models to identify events where SWE fell below the 30th percentile compared to average historical snowpack. Rhoades et al. found that parts of the Cordillera consistently fell into low- to no-snow values for the second half of this century, with the low-snowpack trend beginning to emerge as early as 2025. Similar to Weider et al.’s findings, changes to the Cordillera snowpack were tied in part to an increase in temperature, which translated into fewer days below freezing and a larger proportion of precipitation falling as rain rather than snow.

As noted by Weider et al., warming-driven shifts in quantity and timing of snowmelt create challenges for water managers, because when a larger proportion of runoff comes from rain instead of snow, timing of water supplies becomes less predictable. Additionally, there is much still to learn regarding broader cascading impacts across ecological and freshwater systems and how these relate to human systems (including food production, recreation, and water quality).

Preparing for the future

Collectively, these studies paint a picture of a future California marked by less snow on average than in historic periods, punctuated by episodic extreme precipitation events. The magnitude and pace of changes may be determined by emissions pathways, but multiple studies show that even under low-emissions scenarios, California and other locations dependent on snowpack for their water will face conditions for which historical records cannot provide a template.

As water supplies tied to snowpack are projected to become less predictable in quantity and timing, Rhoades et al. emphasize the increased importance of adaptive water storage infrastructure and innovative management approaches, particularly for regions that lack such infrastructure. Meanwhile, Huang et al.’s prediction of increased megastorms demonstrates a different kind of challenge for water infrastructure and building codes: preparedness for floods and extreme precipitation events. Proactive thinking and designing for both wetter and drier conditions may aid in planning for a future that differs from the past.

Wieder et al. emphasize the need to think beyond human infrastructure, noting that understanding feedbacks between ecological systems and snowpack will be essential to effective adaptation approaches for mountain communities. Rhoades et al. also emphasize the importance of developing “conceptual frameworks”—analytical approaches that identify connections between system variables.

Whether preparing for drought or excess water, findings from across all studies indicate that high-emissions scenarios will accelerate and exacerbate hydrologic changes. Rhoades et al. find that the rate of carbon emissions determines how soon low- to no-snow conditions emerge, while Huang et al. find that risk of extreme flooding increases with each degree of atmospheric warming, even when the climate has already warmed. Corringham et al. similarly find that impacts in the western U.S. differ by climate scenario: the ~$1 billion/year average spending on atmospheric river-related flood damage over the past 40 years doubles under an intermediate-emissions scenario (RCP4.5) but more than triples under a high-emissions scenario (RCP8.5). Consequently, the speed and scale of climate warming will play a significant role in determining recurrence of catastrophic events in the coming decades. Collectively, these studies indicate that successful climate mitigation activities carried out now can dramatically reduce the severity of future impacts from atmospheric rivers, floods, and droughts.

Featured research:
Carrer et al., “Recent Waning Snowpack in the Alps Is Unprecedented in the Last Six Centuries,” Nature Climate Change 13 (2023): 155-160, https://www.nature.com/articles/s41558-022-01575-3.
T.W. Corringham et al., “Climate Change Contributions to Future Atmospheric River Flood Damages in the Western United States,” Scientific Reports 12 (2022), https://www.nature.com/articles/s41598-022-15474-2.
Huang and D.L. Swain, “Climate Change Is Increasing the Risk of a California Megaflood,” Science Advances 8, no. 32 (2022), https://www.science.org/doi/full/10.1126/sciadv.abq0995.
 M.C. Kirchmeier-Young and X. Zhang, “Human Influence Has Intensified Extreme Precipitation in North America,” PNAS 117, no. 24 (2020), pnas.org/doi/10.1073/pnas.1921628117.
A.C. Michaelis et al., “Atmospheric River Precipitation Enhanced by Climate Change: A Case Study of the Storm that Contributed to California’s Oroville Dam Crisis,” Earths Future 10, no. 3 (2022),https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021EF002537.
A.M. Rhoades et al., “Asymmetric Emergence of Low-to-No Snow in the Midlatitudes of the American Cordillera,” Nature Climate Change 12 (2022): 1151–1159, https://doi.org/10.1038/s41558-022-01518-y.
W.R. Weider et al., “Pervasive Alterations to Snow-Dominated Ecosystem Functions Under Climate Change,” PNAS 119, no. 30 (2022), https://www.pnas.org/doi/abs/10.1073/pnas.2202393119.

The post Atmospheric Rivers, Floods, And Drought: The Paradox Of California’s Wetter And Drier Climate Future appeared first on Energy Innovation: Policy and Technology.

As the impacts of climate change intensify, experts predict fundamental shifts in mountain hydrologic cycles, with consequences for snow-reliant people and ecosystems. California can serve as a case study to help connect the dots between rising temperatures and regional atmospheric patterns.
The post Atmospheric Rivers, Floods, And Drought: The Paradox Of California’s Wetter And Drier Climate Future appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

Energy Innovation partners with the independent nonprofit Aspen Global Change Institute (AGCI) to provide climate and energy research updates. The research synopsis below comes from AGCI Program Director Emily Jack-Scott and AGCI Program Associate Devan Crane. A full list of AGCI’s updates covering recent climate change and clean energy pathways research is available online at https://www.agci.org/solutions/quarterly-research-reviews.

Recent research highlights how 65 percent of food system emissions come from the production, processing, transport, and consumption of just four emissions-intensive foods: beef, milk, rice, and corn (maize).

Faced with high food prices and continuous disruptions to supply chains, many households in the United States are appreciating afresh what it takes to grow, gather, and deliver the food they consume on a daily basis. But what the average consumer may not fully recognize is the extent to which their everyday food choices contribute to emissions of greenhouse gasses (GHGs). The food system as a whole accounts for a whopping 35 percent of global emissions, and consumer decisions like diet and shopping patterns greatly influence those emissions.

Emerging research is beginning to shed light on actions that consumers and producers can take to reduce food system impacts on the climate and move toward a “net-zero” system in which all emissions produced are offset by sequestration processes.

Emissions from farm to table to landfill

Emissions are generated at every stage of the food system, from the production of food on farms to transport and refrigeration to processing and packaging to consumer dietary choices and, ultimately, to food waste. Seventy percent of total food system emissions come from land-use change. For example, when a forest—which naturally absorbs and stores carbon dioxide as trees grow—is logged and converted to grazing or agricultural land, GHGs are released as trees decompose. Additional emissions result from tilling soils and applying fertilizers for agricultural production. The remaining food system emissions are attributable to other stages such as transport, packaging, and waste. With rising populations and growing appetites for emissions-intensive foods, emissions are projected to increase 50 percent by 2050 under business-as-usual conditions.

In a 2022 paper published in Nature Scientific Reports, Ciniro Costa, Jr., and colleagues highlight how 65 percent of food system emissions come from the production, processing, transport, and consumption of just four foodstuffs: beef, milk, rice, and corn (maize). By focusing on these emissions-intensive foods, the authors modeled 60 scenarios of interventions that could reduce emissions across the global food system. They found that a net-zero food system could be achieved through widespread adoption of system-wide efficiency improvements, shifts toward plant-forward diets, nature-based sequestration, and adoption of emerging technologies.

Most of the low-emissions interventions analyzed (70 percent) utilize existing know-how and technologies: reducing deforestation, better managing manure, improving feed and breeding (which can reduce methane emissions from livestock), reducing nitrogen fertilizer overuse and runoff, and adopting renewable energy and energy efficiency. Sequestration approaches such as agroforestry and low- or no-till agriculture also have significant co-benefits such as soil and water conservation. Greater adoption of low-emissions practices means less reliance on sequestration will be needed to achieve a net-zero emissions food system.

Emissions from food loss and waste

Reducing food loss and waste is an additional practice that Costa and colleagues emphasize. Food loss and waste alone account for 8-10 percent of all global GHG emissions (Ribbers et al., 2022), with approximately 1.3 billion tons of food perishing annually (Ouro-Salim and Guarieri, 2021). Food loss and food waste are often considered in tandem, but they are distinct issues. Food loss typically refers to loss of edible food before harvest or in the supply chain (e.g., due to inability to harvest all of a crop before it begins to rot, or poor refrigeration during transport). Food waste, by contrast, refers to loss of edible food due to consumer behavior, (e.g., over-ordering at a restaurant or poor planning that leads to groceries expiring and becoming inedible) (Kumar et al., 2022).

Notably, there are significant differences between high-income and low-income countries when it comes to food loss and waste. In high-income countries, food waste makes up 50 percent of overall losses, whereas food waste in low-income countries accounts for only 5 percent of overall losses (Kumar et al., 2022). In low-income countries, food loss is more of a problem and typically results from systemic challenges, such as lack of access to non-local markets, storage, transportation, refrigeration, and harvesting technology (Ouro-Salim and Guarieri, 2021). Reducing food waste in high-income countries is largely a voluntary act for the consumer, with very few waste-reduction enforcement policies in place (Stancu and Lähteenmäki, 2022).

Food waste can also vary by type of food, and high-nutrition foods like fresh produce are especially at risk of waste. Qin and Horvath found in their 2022 study published in Resources, Conservation & Recycling that in the U.S., household food waste can be the largest source of food loss emissions. In the case of cherries, for instance, extreme loss and waste nearly triple emissions: for every kilogram (2.2 lbs) of cherries consumed by a household, another kilogram is lost during production and transit, and a third kilogram is wasted post-purchase (see Figure 1).

Figure 1. “Sankey diagram for the production and food loss of one kilogram (2.2 pounds) of cherry consumption. Ec covers the life-cycle emissions for consumed food from production, packaging, transportation, and refrigeration in the truck, retail store, and consumer’s home. El covers the cradle-to-grave emissions from food loss.” Source: Qin and Horvath, 2022.

Reducing food loss and waste is one way households and individuals have the power to significantly reduce their climate impact, especially in high-income countries. So what holds us back? Why do so many U.S. consumers waste food, especially when it is increasingly expensive and in some instances sporadically available? And what other choices can consumers make to reduce emissions from the food they eat?

Psychology of reducing food waste

In a 2022 paper in Food Policy, co-authors Violeta Stancu and Liisa Lähteenmäki examined food-related behaviors that contribute to consumer food waste, including consumer self-identities, purchasing tendencies, and disgust sensitivity (how easily disgusted a person is by a food’s perceived edibility). They argue that a better understanding of these drivers can help inform more targeted policy and public awareness campaigns.

In a related paper in Global Environmental Change led by Daphne Ribbers, researchers investigated behavioral motivations akin to the consumer self-identities outlined by Stancu and Lähteenmäki. While the two concepts are similar, motivation “can be defined as the process that determines the … direction of behavior, and is generally understood as the reason why humans continue, or terminate a specific behavior” (Ribbers et al., 2023), whereas self-identities refer to “behaviors that are in line with … the label that people use to describe themselves” (Stancu and Lähteenmäki, 2022). Both studies examined the environmental, moral, financial, and social dimensions of these drivers of behavior.

Stancu and Lähteenmäki found that individuals with frugal and environmental self-identities and in older demographics were less likely to waste food, whereas individuals prone to impulse buying, with high disgust sensitivity, and with higher incomes were more likely to waste food. They also found that in-store marketing and retail stimuli can influence individuals to purchase more than was planned (impulse buying), leading to food waste. These factors point to an opportunity for awareness campaigns that can help consumers limit impulse buying and adopt mindful shopping behaviors. Retailers could also be held accountable to reduce food waste by using marketing strategies that don’t prey on impulsive tendencies.

Individuals who are more easily disgusted by perceived food imperfections were also found to be more wasteful. The perception that food was inedible was largely influenced by misunderstanding the common food-labeling system of “best-by” and “use-by” dates. “Best-by” dates relate to food quality, whereas “use-by” dates relate to food safety. Checking edibility by smell or taste when a food is past its labeling date, rather than automatically tossing food, could reduce food waste. Education campaigns focused on increasing food labeling knowledge could help lessen confusion and reduce food being thrown out prematurely.

Ribbers and colleagues found that consumers who waste less food were significantly motivated by environmental and moral factors: awareness of environmental impacts or feeling guilt about wasting food. Interestingly, financial and social motivations (frugality or the concern of appearing wasteful to others, respectively) were not significant motivations to avoid food waste. The authors caution that there may be instances in which financial motivations are significant and may be intertwined with environmental and moral motivations. As in Stancu and Lähteenmäki’s study, Ribbers found that older people typically waste less food.

Both papers also noted that future research should focus on behaviors and culturally specific motivations for more targeted solutions and policy.

Individual actions to reduce food emissions

In addition to reducing food waste, individual consumers have opportunities to limit their food emissions footprint by reducing superfluous packaging and by embracing dietary shifts.

Often consumers only consider the food waste they can physically see and touch, (e.g., scraping a plate into the trash at the end of a meal or forgetting a leftover box the restaurant packed up). In reality, consumers contribute to an entire waste cycle that stems from the energy and water used during production, harvest, material extraction, packaging creation, packaging, transportation, storage, consumption, and wastage/misuse (see figure 2). Consumers should also consider the end-of-life consequences of waste: pollution, millennia-long breakdown times, and overflowing landfills (Qin and Horvath, 2022).

Figure 2. Flow diagram of the food life cycle – encompassing an overview of the processes for inputs, opportunities for waste, and outputs. This cycle illuminates what may not be visible to the end consumer. Source: Qin and Horvath 2022.

For instance, use of plastic packaging has increased sharply in recent decades, from 2 million tons in 1950 to 381 million tons in 2015. Some packaging helps reduce waste by extending the shelf life of foods and protecting them during transport, but not all packaging has the same emissions. In a 2022 analysis in Resources, Conservation and Recycling, co-authors Mengqing Kan and Shelie Miller focused on the environmental impacts of plastic packaging across a food’s entire lifecycle as well as its annual consumption. The authors then compared the energy used over various foods’ life cycles to equivalent vehicle emissions to put the results into more familiar terms for non-scientists.

Figure 3. Translating the consumption impacts of certain food items into equivalent miles of vehicle travel allows individuals to put their own consumption habits in perspective with the typical daily activity of driving. The graph shows “break- even miles at which climate change of food packaging equals climate change of vehicle transportation.” Carbonated beverages being the biggest offender in the list of foods studied, shows that the equivalent impact of a one year’s consumption per capita is equal to 52.2 miles of GHG emissions (84 kilometers) which is nearly double of the daily average of 30 miles (48.3 kilometers) traveled by the US driver. Source: Kan and Miller 2022

Kan and Miller found that, based on average US per capita annual consumption rates, while emissions from food packaging are significant, for most products they pale in comparison to per capita emissions from other everyday activities like driving. Most of the food packaging in the study had annual per capita emissions equivalent to less than a day of driving (the average person in the U.S. drives 30 miles per day). Notable exceptions included carbonated beverages, crunchy chicken breast, certain types of milk, and bottled water. The authors also note significant co-benefits to limiting packaging, such as reducing the environmental impacts of extraction and disposal, especially for products disposed of improperly.

Dietary shifts are another significant way consumers can limit their personal food emissions. Virtually all scenarios that point to a net-zero food system rely on consumers shifting to a more plant-forward diet, especially in high-income countries. Demand for livestock products like beef and milk must be reduced by 10-25 percent to attain low-emissions or net-zero goals (Costa et al., 2022).

Livestock contribute to food system emissions through the food they consume and excrete, as well as the water and land needed for their production. In a 2022 paper published in the Proceedings of the National Academy of Sciences, Claudia Arndt and colleagues studied several ways to reduce methane gas emissions from livestock without reducing productivity by changing their diet formulations and grazing practices alongside breeding and genetic standards. Several combinations of mitigation strategies even increased animal production. The study found that adoption of any one of these strategies alone would not attain global emissions reduction goals by 2030, but adopting multiple effective strategies would achieve target reductions.

Reducing emissions at the livestock production stage is critical to overall reduction of food system-related GHG emissions. But ultimately, consumer demand for livestock products must be curbed to lower overall emissions. Development of new plant proteins is one way to shift consumer diets to meat alternatives and meal substitutions (Costa et al., 2022).

Beyond individual actions

 While individual consumers have a great deal of agency to curb emissions by reducing food waste and packaging and choosing more plant-forward diets, governments and investors must also design policies and financial mechanisms to lessen emissions throughout the food system.

Circular economy practices can help redirect food from landfills by donating still-good foods for human and animal consumption or channeling inedible foods to composting, bio products, and sewage/wastewater treatment facilities (Ouro-Salim and Guarieri, 2021).

In their scenarios to achieve a net-zero emissions food system, Costa and colleagues found that while most low-emissions interventions were based on existing technologies, only about 50 percent would be cost effective at a price less than $100/ton of carbon dioxide. They lay out the following timeline of actions most likely to achieve net-zero emissions while increasing production of food for growing populations, favoring the most cost-effective interventions in the near future:

Figure 4. “Roadmap for food systems net zero emissions by 2050.” The roadmap shows how the culmination of various techniques can lead to a reduction of GHG emissions to a neutral or net-zero state by 2050. Source: Costa et al. 2022

Governance and finance mechanisms will be needed to reduce deforestation and emissions from high-emitting crops and livestock and promote sequestration at the scale required to reduce global food emissions. For strategies that are already cost effective, traditional bank loans should be explored. To promote practices that are less cost effective, public dollars can be strategically invested in private ventures to reduce initial risks of early adoption and scale up carbon markets. The authors also spotlight the need for long-term philanthropic and patient private capital investments in high-risk emerging technologies.

Featured Research
Costa Jr, C., Wollenberg, E., Benitez, M., Newman, R., Gardner, N. and Bellone, F., 2022. Roadmap for achieving net-zero emissions in global food systems by 2050. Scientific Reports, 12(1), p.15064.
Kan, M. and Miller, S.A., 2022. Environmental impacts of plastic packaging of food products. Resources, Conservation and Recycling, 180, p.106156.
Kumar, S., Srivastava, M.S.K., Mishra, A. and Gupta, A.K., Ethically–Minded Consumer Behavior: Understanding Ethical Behavior of Consumer towards Food Wastage.
Ouro‐Salim, O. and Guarnieri, P., 2022. Circular economy of food waste: A literature review. Environmental Quality Management, 32(2), pp.225-242.
Qin, Y. and Horvath, A., 2022. What contributes more to life-cycle greenhouse gas emissions of farm produce: Production, transportation, packaging, or food loss?. Resources, Conservation and Recycling, 176, p.105945.
Ribbers, D., Geuens, M., Pandelaere, M. and van Herpen, E., 2023. Development and validation of the motivation to avoid food waste scale. Global Environmental Change, 78, p.102626.
Stancu, V. and Lähteenmäki, L., 2022. Consumer-related antecedents of food provisioning behaviors that promote food waste. Food Policy, 108, p.102236.

The post Reducing Food System Emissions, One Bite At A Time appeared first on Energy Innovation: Policy and Technology.

The food system accounts for 35 percent of global emissions, but new research shows how consumers and producers can act to reduce food system impacts on the climate and move toward a net-zero system.
The post Reducing Food System Emissions, One Bite At A Time appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

By Olivia Ashmoore

This week, Energy Innovation Policy & Technology LLC® and RMI published 48 state Energy Policy Simulator (EPS) models. The free, open-source, peer-reviewed, and nonpartisan EPS model empowers users to analyze the effects of hundreds of climate policies. EPS users can design policy packages that achieve net-zero greenhouse gas (GHG) emissions across the economy and pinpoint which policies are most effective at reducing emissions while creating economic and health benefits.

To illustrate how the EPS can inform state action, Energy Innovation® and RMI developed a five-policy scenario and modeled this policy package across six states. The six states have unique emissions profiles with Louisiana, Pennsylvania, and New Mexico having the largest industrial sectors, Minnesota and Michigan the largest transportation sectors, and Wisconsin the largest power sector. Our initial modeling highlights how just five policies, even in states with differing emissions profiles, can significantly cut emissions. Additionally, the five policies generate in-state jobs; our modeling shows that the six states analyzed could see between 13,000 and 118,000 new jobs in 2030. This analysis can help policymakers in any state, regardless of emissions profile, design and implement climate policy.

State EPS models can inform policy to close emissions reduction gaps

The United States government, as well as many state governments, have set ambitious targets to reduce GHG emissions and align with global efforts to solve climate change. While new Inflation Reduction Act investments will spur ample opportunities for transitioning to clean energy, additional state and federal policy action is needed to achieve U.S. climate goals. As states introduce policies to close the gap, policymakers, advocates, and researchers can drive state climate action using data-supported policy analysis.

With the release of the U.S. state EPS models, state policymakers now have detailed GHG emissions data at their fingertips. The state EPS models provide critical information–customized for each state–on forecasted emissions profiles, climate policy effectiveness, and economic impacts. The models provide results in real time, are free to use and modify, and are built using reputable, national data sources.

Energy Innovation® and RMI jointly built the 48 state-level EPS models* using publicly available state and federal data from sources such as the U.S. Bureau of Economic Analysis, U.S. Bureau of Labor Statistics, U.S. Energy Information Administration, the U.S. Environmental Protection Agency, and the National Renewable Energy Laboratory, among others. The models incorporate existing federal and state policy but do not yet incorporate the IRA. Only existing state laws and regulations as of January 2023 are included in the model. Proposed policies are not included, but the model can be used to assess the impacts of such proposals.

More information on our sources and methodology is available at https://docs.energypolicy.solutions/us-state-eps-methodology. The state EPS models are publicly available at https://energypolicy.solutions/us-states and can be run online and downloaded to run locally using free Vensim software.

Top five carbon-cutting policies bring the U.S. closer to meeting climate goals

Modeling the five-policy scenario by Energy Innovation® and RMI demonstrates how a small number of policies can effectively cut emissions, in states with quite different GHG sources. The five policies are: clean electricity standards, zero-emission vehicle standards, clean building equipment standards, industrial efficiency and emissions standards, and standards for methane detection, capture, and destruction. Together, these five policies constitute a bold policy plan to slash emissions across a state’s economy.

A Clean Electricity Standard requires retail electricity utilities to meet electricity sales with qualifying clean electricity sources, typically solar, wind, hydro, geothermal, and nuclear power. Many states already have clean electricity standards or renewable portfolio standards in place. In our scenario, we modeled an 80 percent clean energy by 2030 and 100 percent clean by 2035 requirement. In Pennsylvania, this policy accounted for the largest share of emissions reductions.

Zero-Emission Vehicle Standards require a share of newly sold vehicles to be zero-emission vehicles (ZEVs), usually battery electric vehicles. California recently enacted the Advanced Clean Cars II rule, which requires 100 percent light-duty passenger ZEV sales by 2035. Our modeled policy scenario aligns with California’s existing Advanced Clean Cars II rule and California’s Advanced Clean Trucks rule. In Wisconsin, this policy contributes 20 percent of total emissions reductions in the five-policy scenario in 2050.

Clean Building Equipment Standards require new building appliances shift from fossil fuel use in buildings to electricity. To address building sector emissions, newly installed building equipment should be fully electric, beginning with space heating and water heating in new construction, but eventually moving to all end uses in new and existing buildings. We modeled steadily increasing standards that require electric-only equipment in new and existing buildings by 2035. In Michigan, clean building equipment standards contribute 25 percent of total emissions reductions in the five-policy scenario in 2050.

Industrial Emissions Standards shift fossil fuel use to a mix of electricity and hydrogen for low-temperature and medium- to high-temperature heat processes. The modeling also assumes about a 5 percent reduction in fuel use relative to business-as-usual by 2030 with continued progress to 14 percent by 2050 with energy efficiency improvements that help comply with the emissions standard. In Louisiana, because the industrial sector accounts for most of the state’s emissions, industrial emissions standards account for greater emissions reductions than all the other policies combined.

Standards for Methane Emissions require methane leaks—primarily from fossil fuel extraction and transport, agriculture, and landfills—to be identified and captured. The five-policy scenario includes strong methane capture and destruction. The standards result in emissions reductions equal to capturing 100 percent of the potential methane mitigation by 2030 modeled by the EPA. In New Mexico, methane emissions standards contribute 24 percent of total emissions reductions in the five-policy scenario in 2050.

Economic Benefits

The five-policy scenario also yields gross domestic product (GDP) and job benefits for each of the six states. Our modeling shows that the six states analyzed could see between 13,000 and 118,000 new jobs and between 1 percent and 3 percent GDP growth in 2030.

Health Benefits

Policies to transition to clean energy technologies also deliver public health benefits by cutting harmful pollutants such as particulate matter 2.5, sulfur oxides, and nitrogen oxides. Our modeling shows that the six states analyzed could avoid between five and 300 premature deaths annually in 2030 and prevent between 90 and 3,800 asthma attacks and 400 and 20,000 lost workdays annually in 2030.

Conclusion

The state EPS models provide reputable, real-time modeling results and integrated analysis of economic and public health co-benefits. Modeling five policies in six states demonstrates how state EPS models can be used to design policy packages that effectively reduce emissions, create jobs, and improve health. As states develop climate action plans and evaluate how to achieve their GHG targets, the state EPS models are an indispensable tool. Policymakers and other stakeholders can reach out to Energy Innovation® and RMI for assistance by emailing policy@nullenergyinnovation.org.

The post Energy Innovation Policy & Technology® and RMI Launch 48 U.S. State EPS Models appeared first on Energy Innovation: Policy and Technology.

Energy Innovation Policy &Technology LLC® and RMI developed 48 state Energy Policy Simulator (EPS) models to help policymakers design impactful climate policies. To show how the EPS can inform decision-making, Energy Innovation® and RMI modeled a five-policy scenario across six states, finding five top policies that can dramatically cut state greenhouse gas emissions, grow state economies, and prevent thousands of asthma attacks.
The post Energy Innovation Policy & Technology® and RMI Launch 48 U.S. State EPS Models appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

Hirebucket

FREE
VIEW