Flying manipulator robots have shown themselves to be useful in many applications, such as industrial maintenance or construction. Their utility in hard to reach or hazardous locations makes them particularly promising in applications that put humans at risk. While these machines have been continuously improving over the years, they are still lacking in certain areas.Flying manipulator robots have shown themselves to be useful in many applications, such as industrial maintenance or construction. Their utility in hard to reach or hazardous locations makes them particularly promising in applications that put humans at risk. While these machines have been continuously improving over the years, they are still lacking in certain areas.[#item_full_content]
It’s been a goal for as long as humanoids have been a subject of popular imagination—a general-purpose robot that can do rote tasks like fold laundry or sort recycling simply by being asked.It’s been a goal for as long as humanoids have been a subject of popular imagination—a general-purpose robot that can do rote tasks like fold laundry or sort recycling simply by being asked.[#item_full_content]
Like octopuses squeezing through a tiny sea cave, metatruss robots can adapt to demanding environments by changing their shape. These mighty morphing robots are made of trusses composed of hundreds of beams and joints that rotate and twist, enabling astonishing volumetric transformations.Like octopuses squeezing through a tiny sea cave, metatruss robots can adapt to demanding environments by changing their shape. These mighty morphing robots are made of trusses composed of hundreds of beams and joints that rotate and twist, enabling astonishing volumetric transformations.[#item_full_content]
Researchers have uncovered serious security flaws with the Unitree G1 humanoid robot, a machine that is already being used in laboratories and some police departments. They discovered that G1 can be used for covert surveillance and could potentially launch a full-scale cyberattack on networks.Researchers have uncovered serious security flaws with the Unitree G1 humanoid robot, a machine that is already being used in laboratories and some police departments. They discovered that G1 can be used for covert surveillance and could potentially launch a full-scale cyberattack on networks.[#item_full_content]
Fidget poppers are an example of “bistability,” as the popped circles rest in one of two stable states. Purdue University researchers have taken this idea to its extreme, building robots that can be preprogrammed and controlled using just the physical properties of these fidget poppers.Fidget poppers are an example of “bistability,” as the popped circles rest in one of two stable states. Purdue University researchers have taken this idea to its extreme, building robots that can be preprogrammed and controlled using just the physical properties of these fidget poppers.[#item_full_content]
Chatbots like ChatGPT and Claude have experienced a meteoric rise in usage over the past three years because they can help you with a wide range of tasks. Whether you’re writing Shakespearean sonnets, debugging code, or need an answer to an obscure trivia question, artificial intelligence (AI) systems seem to have you covered. The source of this versatility? Billions or even trillions of textual data points across the Internet.Chatbots like ChatGPT and Claude have experienced a meteoric rise in usage over the past three years because they can help you with a wide range of tasks. Whether you’re writing Shakespearean sonnets, debugging code, or need an answer to an obscure trivia question, artificial intelligence (AI) systems seem to have you covered. The source of this versatility? Billions or even trillions of textual data points across the Internet.[#item_full_content]
Imagine tiny robots zipping across the surface of a lake to check water quality or searching for people in flooded areas. This technology is moving closer to reality thanks to work by researchers at the University of Virginia’s School of Engineering and Applied Science. Inspired by nature and insects such as water striders that walk on water, they created two prototype devices that can propel themselves across liquid surfaces.Imagine tiny robots zipping across the surface of a lake to check water quality or searching for people in flooded areas. This technology is moving closer to reality thanks to work by researchers at the University of Virginia’s School of Engineering and Applied Science. Inspired by nature and insects such as water striders that walk on water, they created two prototype devices that can propel themselves across liquid surfaces.[#item_full_content]
Remote sensing object detection is a rapidly growing field in artificial intelligence, playing a critical role in advancing the use of unmanned aerial vehicles (UAVs) for real-world applications such as disaster response, urban planning, and environmental monitoring. Yet, designing models that balance both high accuracy and fast, lightweight performance remains a challenge.Remote sensing object detection is a rapidly growing field in artificial intelligence, playing a critical role in advancing the use of unmanned aerial vehicles (UAVs) for real-world applications such as disaster response, urban planning, and environmental monitoring. Yet, designing models that balance both high accuracy and fast, lightweight performance remains a challenge.[#item_full_content]
KAIST research team’s independently developed humanoid robot boasts world-class driving performance, reaching speeds of 12km/h, along with excellent stability, maintaining balance even with its eyes closed or on rough terrain. Furthermore, it can perform complex human-specific movements such as the duckwalk and moonwalk, drawing attention as a next-generation robot platform that can be utilized in actual industrial settings.KAIST research team’s independently developed humanoid robot boasts world-class driving performance, reaching speeds of 12km/h, along with excellent stability, maintaining balance even with its eyes closed or on rough terrain. Furthermore, it can perform complex human-specific movements such as the duckwalk and moonwalk, drawing attention as a next-generation robot platform that can be utilized in actual industrial settings.[#item_full_content]
To estimate the weight of a rock, you pick it up. Is it rough, or smooth? You run a finger over it. We’re constantly gathering information through our sense of touch, which is closely connected to how we move.To estimate the weight of a rock, you pick it up. Is it rough, or smooth? You run a finger over it. We’re constantly gathering information through our sense of touch, which is closely connected to how we move.[#item_full_content]