The body movements performed by humans and other animals are known to be supported by several intricate biological and neural mechanisms. While roboticists have been trying to develop systems that emulate these mechanisms for decades, the processes driving these systems’ motions remain very different.The body movements performed by humans and other animals are known to be supported by several intricate biological and neural mechanisms. While roboticists have been trying to develop systems that emulate these mechanisms for decades, the processes driving these systems’ motions remain very different.[#item_full_content]
Until now, when scientists created magnetic robots, their magnetization profiles were generally fixed, enabling only a specific type of shape programming capability using applied external magnetic fields. Researchers at the Max Planck Institute for Intelligent Systems (MPI-IS) have now proposed a new magnetization reprogramming method that can drastically expand the complexity and diversity of the shape-programming capabilities of such robots.Until now, when scientists created magnetic robots, their magnetization profiles were generally fixed, enabling only a specific type of shape programming capability using applied external magnetic fields. Researchers at the Max Planck Institute for Intelligent Systems (MPI-IS) have now proposed a new magnetization reprogramming method that can drastically expand the complexity and diversity of the shape-programming capabilities of such robots.[#item_full_content]
Growing up, we learn to push just hard enough to move a box and to avoid touching a hot pan with our bare hands. Now, a robot hand has been developed that also has these instincts.Growing up, we learn to push just hard enough to move a box and to avoid touching a hot pan with our bare hands. Now, a robot hand has been developed that also has these instincts.[#item_full_content]
Researchers from the Istituto Italiano di Tecnologia (IIT) in Genoa (Italy) and Brown University in Providence (U.S.) have discovered that people sense the hand of a humanoid robot as part of their body schema, particularly when it comes to carrying out a task together, like slicing a bar of soap.Researchers from the Istituto Italiano di Tecnologia (IIT) in Genoa (Italy) and Brown University in Providence (U.S.) have discovered that people sense the hand of a humanoid robot as part of their body schema, particularly when it comes to carrying out a task together, like slicing a bar of soap.[#item_full_content]
Exoskeletons typically work by implementing motions programmed in advance and having the user call for them, making it difficult to use them for a wide range of motions in real-life environments.Exoskeletons typically work by implementing motions programmed in advance and having the user call for them, making it difficult to use them for a wide range of motions in real-life environments.[#item_full_content]
Birds flock in order to forage and move more efficiently. Fish school to avoid predators. And bees swarm to reproduce. Recent advances in artificial intelligence have sought to mimic these natural behaviors as a way to potentially improve search-and-rescue operations or to identify areas of wildfire spread over vast areas—largely through coordinated drone or robotic movements. However, developing a means to control and utilize this type of AI—or “swarm intelligence”—has proved challenging.Birds flock in order to forage and move more efficiently. Fish school to avoid predators. And bees swarm to reproduce. Recent advances in artificial intelligence have sought to mimic these natural behaviors as a way to potentially improve search-and-rescue operations or to identify areas of wildfire spread over vast areas—largely through coordinated drone or robotic movements. However, developing a means to control and utilize this type of AI—or “swarm intelligence”—has proved challenging.[#item_full_content]
A team of scientists from China and the U.S. is pioneering the development of bubble-powered robots, which could one day replace needles for painless drug delivery into the body. Inspired by nature, the researchers developed a new technique that harnesses the energy released by a collapsing bubble in a liquid, a process known as cavitation.A team of scientists from China and the U.S. is pioneering the development of bubble-powered robots, which could one day replace needles for painless drug delivery into the body. Inspired by nature, the researchers developed a new technique that harnesses the energy released by a collapsing bubble in a liquid, a process known as cavitation.[#item_full_content]
A spinal cord injury in most vertebrates likely inhibits locomotion and induces paralysis—not so in eels. They not only possess the ability to move through water, and surprisingly, across land when intact, but can also continue to swim even if their spinal cord is severed.A spinal cord injury in most vertebrates likely inhibits locomotion and induces paralysis—not so in eels. They not only possess the ability to move through water, and surprisingly, across land when intact, but can also continue to swim even if their spinal cord is severed.[#item_full_content]
Scientists at UCL, Google DeepMind and Intrinsic have developed a powerful new AI algorithm that enables large sets of robotic arms to work together faster and smarter in busy industrial settings, potentially saving manufacturers hundreds of hours of planning time and unlocking new levels of flexibility and efficiency.Scientists at UCL, Google DeepMind and Intrinsic have developed a powerful new AI algorithm that enables large sets of robotic arms to work together faster and smarter in busy industrial settings, potentially saving manufacturers hundreds of hours of planning time and unlocking new levels of flexibility and efficiency.[#item_full_content]
For all their technological brilliance, from navigating distant planets to performing complex surgery, robots still struggle with a few basic human tasks. One of the most significant challenges is dexterity, which refers to the ability to grasp, hold and manipulate objects. Until now, that is. Scientists from the Toyota Research Institute in Massachusetts have trained a robot to use its entire body to handle large objects, much like humans do.For all their technological brilliance, from navigating distant planets to performing complex surgery, robots still struggle with a few basic human tasks. One of the most significant challenges is dexterity, which refers to the ability to grasp, hold and manipulate objects. Until now, that is. Scientists from the Toyota Research Institute in Massachusetts have trained a robot to use its entire body to handle large objects, much like humans do.[#item_full_content]