The public release of ChatGPT and other large language models (LLMs) has allowed developers worldwide to start experimenting with these models to enhance the interactive capabilities of their own systems. Similar generalizable models for robotic manipulation, however, remain scarce.The public release of ChatGPT and other large language models (LLMs) has allowed developers worldwide to start experimenting with these models to enhance the interactive capabilities of their own systems. Similar generalizable models for robotic manipulation, however, remain scarce.[#item_full_content]

Fast-moving autonomous mobile robots could help to deliver goods to various locations, helping to tackle disruptions to product supply chains. Nonetheless, wheeled or legged robots alone might not be sufficient to complete deliveries both efficiently and independently.Fast-moving autonomous mobile robots could help to deliver goods to various locations, helping to tackle disruptions to product supply chains. Nonetheless, wheeled or legged robots alone might not be sufficient to complete deliveries both efficiently and independently.[#item_full_content]

AI and robotics enhance design of sustainable aerogels for wearable tech

Engineers at the University of Maryland (UMD) have developed a model that combines machine learning and collaborative robotics to overcome challenges in the design of materials used in wearable green tech.Engineers at the University of Maryland (UMD) have developed a model that combines machine learning and collaborative robotics to overcome challenges in the design of materials used in wearable green tech.[#item_full_content]

A new study by Carnegie Mellon University researchers found that when roboticists and people with disabilities collaborate on robot designs, interesting ideas emerge that could make existing robots more accessible and inspire new uses.A new study by Carnegie Mellon University researchers found that when roboticists and people with disabilities collaborate on robot designs, interesting ideas emerge that could make existing robots more accessible and inspire new uses.[#item_full_content]

When robots come across unfamiliar objects, they struggle to account for a simple truth: Appearances aren’t everything. They may attempt to grasp a block, only to find out it’s a literal piece of cake. The misleading appearance of that object could lead the robot to miscalculate physical properties like the object’s weight and center of mass, using the wrong grasp and applying more force than needed.When robots come across unfamiliar objects, they struggle to account for a simple truth: Appearances aren’t everything. They may attempt to grasp a block, only to find out it’s a literal piece of cake. The misleading appearance of that object could lead the robot to miscalculate physical properties like the object’s weight and center of mass, using the wrong grasp and applying more force than needed.[#item_full_content]

Let’s say you want to train a robot so it understands how to use tools and can then quickly learn to make repairs around your house with a hammer, wrench, and screwdriver. To do that, you would need an enormous amount of data demonstrating tool use.Let’s say you want to train a robot so it understands how to use tools and can then quickly learn to make repairs around your house with a hammer, wrench, and screwdriver. To do that, you would need an enormous amount of data demonstrating tool use.[#item_full_content]

Teams of robots have the potential of tackling far more elaborate missions than individual robots, for instance, covering long distances faster, visiting different sites simultaneously, or monitoring larger geographical areas. Platforms that combine reliable hardware and software for multi-robot applications could help to advance research in this field, facilitating the testing of robot teams in specific real-world settings.Teams of robots have the potential of tackling far more elaborate missions than individual robots, for instance, covering long distances faster, visiting different sites simultaneously, or monitoring larger geographical areas. Platforms that combine reliable hardware and software for multi-robot applications could help to advance research in this field, facilitating the testing of robot teams in specific real-world settings.[#item_full_content]

Researchers at Carnegie Mellon University’s Robotics Institute (RI) have developed a robotic system that interactively co-paints with people. Collaborative FRIDA (CoFRIDA) can work with users of any artistic ability, inviting collaboration to create art in the real world.Researchers at Carnegie Mellon University’s Robotics Institute (RI) have developed a robotic system that interactively co-paints with people. Collaborative FRIDA (CoFRIDA) can work with users of any artistic ability, inviting collaboration to create art in the real world.[#item_full_content]

The eyes of raptors can accurately perceive prey from kilometers away. Is it possible to model camera technology after birds’ eyes? Researchers have developed a new type of camera that is inspired by the structures and functions of birds’ eyes. A research team led by Prof. Kim Dae-Hyeong at the Center for Nanoparticle Research within the Institute for Basic Science (IBS), in collaboration with Prof. Song Young Min at the Gwangju Institute of Science and Technology (GIST), has developed a perovskite-based camera specializing in object detection.The eyes of raptors can accurately perceive prey from kilometers away. Is it possible to model camera technology after birds’ eyes? Researchers have developed a new type of camera that is inspired by the structures and functions of birds’ eyes. A research team led by Prof. Kim Dae-Hyeong at the Center for Nanoparticle Research within the Institute for Basic Science (IBS), in collaboration with Prof. Song Young Min at the Gwangju Institute of Science and Technology (GIST), has developed a perovskite-based camera specializing in object detection.[#item_full_content]

To complete real-world tasks in home environments, offices and public spaces, robots should be able to effectively grasp and manipulate a wide range of objects. In recent years, developers have created various machine learning–based models designed to enable skilled object manipulation in robots.To complete real-world tasks in home environments, offices and public spaces, robots should be able to effectively grasp and manipulate a wide range of objects. In recent years, developers have created various machine learning–based models designed to enable skilled object manipulation in robots.[#item_full_content]

Hirebucket

FREE
VIEW