Imagine having a continuum soft robotic arm bend around a bunch of grapes or broccoli, adjusting its grip in real time as it lifts the object. Unlike traditional rigid robots that generally aim to avoid contact with the environment as much as possible and stay far away from humans for safety reasons, this arm senses subtle forces, stretching and flexing in ways that mimic more of the compliance of a human hand. Its every motion is calculated to avoid excessive force while achieving the task efficiently.Imagine having a continuum soft robotic arm bend around a bunch of grapes or broccoli, adjusting its grip in real time as it lifts the object. Unlike traditional rigid robots that generally aim to avoid contact with the environment as much as possible and stay far away from humans for safety reasons, this arm senses subtle forces, stretching and flexing in ways that mimic more of the compliance of a human hand. Its every motion is calculated to avoid excessive force while achieving the task efficiently.[#item_full_content]

Embodied artificial intelligence (AI) systems are robotic agents that rely on machine learning algorithms to sense their surroundings, plan their actions and execute them. A key aspect of these systems are visual perception modules, which allow them to analyze images captured by cameras and interpret them.Embodied artificial intelligence (AI) systems are robotic agents that rely on machine learning algorithms to sense their surroundings, plan their actions and execute them. A key aspect of these systems are visual perception modules, which allow them to analyze images captured by cameras and interpret them.[#item_full_content]

Our muscles are nature’s actuators. The sinewy tissue is what generates the forces that make our bodies move. In recent years, engineers have used real muscle tissue to actuate “biohybrid robots” made from both living tissue and synthetic parts. By pairing lab-grown muscles with synthetic skeletons, researchers are engineering a menagerie of muscle-powered crawlers, walkers, swimmers, and grippers.Our muscles are nature’s actuators. The sinewy tissue is what generates the forces that make our bodies move. In recent years, engineers have used real muscle tissue to actuate “biohybrid robots” made from both living tissue and synthetic parts. By pairing lab-grown muscles with synthetic skeletons, researchers are engineering a menagerie of muscle-powered crawlers, walkers, swimmers, and grippers.[#item_full_content]

When it comes to training robots to perform agile, single-task motor skills, such as handstands or backflips, artificial intelligence methods can be very useful. But if you want to train your robot to perform multiple tasks—say, performing a backward flip into a handstand—things get a little more complicated.When it comes to training robots to perform agile, single-task motor skills, such as handstands or backflips, artificial intelligence methods can be very useful. But if you want to train your robot to perform multiple tasks—say, performing a backward flip into a handstand—things get a little more complicated.[#item_full_content]

Large language models (LLMs), such as the model underpinning the functioning of OpenAI’s platform ChatGPT, are now widely used to tackle a wide range of tasks, ranging from sourcing information to the generation of texts in different languages and even code. Many scientists and engineers also started using these models to conduct research or advance other technologies.Large language models (LLMs), such as the model underpinning the functioning of OpenAI’s platform ChatGPT, are now widely used to tackle a wide range of tasks, ranging from sourcing information to the generation of texts in different languages and even code. Many scientists and engineers also started using these models to conduct research or advance other technologies.[#item_full_content]

Robotic systems that mirror humans both in their appearance and movements, also known as humanoid robots, could be best suited for tackling many tasks that are currently performed by human agents. These include household chores, such as cleaning, tidying up and cooking, as well as the transport of items or the assembly of products.Robotic systems that mirror humans both in their appearance and movements, also known as humanoid robots, could be best suited for tackling many tasks that are currently performed by human agents. These include household chores, such as cleaning, tidying up and cooking, as well as the transport of items or the assembly of products.[#item_full_content]

Researchers at the Department of Mechanical Engineering, Seoul National University, have applied the principle of interlacing to an origami-inspired structure and developed a “Foldable-and-Rollable corruGated Structure (FoRoGated-Structure)” that can be smoothly folded and rolled up for compact storage while maintaining very high strength when deployed. The study was published in the journal Science Robotics on November 26.Researchers at the Department of Mechanical Engineering, Seoul National University, have applied the principle of interlacing to an origami-inspired structure and developed a “Foldable-and-Rollable corruGated Structure (FoRoGated-Structure)” that can be smoothly folded and rolled up for compact storage while maintaining very high strength when deployed. The study was published in the journal Science Robotics on November 26.[#item_full_content]

Soft robots are prized for their agility and gentle touch, which makes them ideal for traversing delicate or enclosed spaces to perform various tasks, from cultivating baby corals in laboratories to inspecting industrial pipes in chemical plants. However, achieving embodied intelligence in such systems, where sensing, movement and power supply work together in an untethered configuration, remains a challenge.Soft robots are prized for their agility and gentle touch, which makes them ideal for traversing delicate or enclosed spaces to perform various tasks, from cultivating baby corals in laboratories to inspecting industrial pipes in chemical plants. However, achieving embodied intelligence in such systems, where sensing, movement and power supply work together in an untethered configuration, remains a challenge.[#item_full_content]

Researchers have developed a new algorithm that combines two processes for personalizing robotic prosthetic devices to both optimize the movement of the prosthetic limb and—for the first time—also help a human user’s body engage in a more natural walking pattern. The new approach can be used to help restore and maintain various aspects of user movement, with the goal of addressing health challenges associated with an amputation.Researchers have developed a new algorithm that combines two processes for personalizing robotic prosthetic devices to both optimize the movement of the prosthetic limb and—for the first time—also help a human user’s body engage in a more natural walking pattern. The new approach can be used to help restore and maintain various aspects of user movement, with the goal of addressing health challenges associated with an amputation.[#item_full_content]

Hirebucket

FREE
VIEW