Researchers have developed a self-healing robotic gripper for use in soft robotics that is adaptable, recyclable and resilient to damage, thanks to heat-assisted autonomous healing.Researchers have developed a self-healing robotic gripper for use in soft robotics that is adaptable, recyclable and resilient to damage, thanks to heat-assisted autonomous healing.[#item_full_content]

Legged robots that artificially replicate the body structure and movements of animals could efficiently complete missions in a wide range of environments, including various outdoor natural settings. To do so, however, these robots should be able to walk on different terrains, such as soil, sand, grass, and so on, without losing balance, getting stuck or falling over.Legged robots that artificially replicate the body structure and movements of animals could efficiently complete missions in a wide range of environments, including various outdoor natural settings. To do so, however, these robots should be able to walk on different terrains, such as soil, sand, grass, and so on, without losing balance, getting stuck or falling over.[#item_full_content]

To teach an AI agent a new task, like how to open a kitchen cabinet, researchers often use reinforcement learning—a trial-and-error process where the agent is rewarded for taking actions that get it closer to the goal.To teach an AI agent a new task, like how to open a kitchen cabinet, researchers often use reinforcement learning—a trial-and-error process where the agent is rewarded for taking actions that get it closer to the goal.[#item_full_content]

ETH Zurich researchers deployed an autonomous excavator, called HEAP, to build a 6-meter-high and 65-meter-long dry-stone wall. The wall is embedded in a digitally planned and autonomously excavated landscape and park.ETH Zurich researchers deployed an autonomous excavator, called HEAP, to build a 6-meter-high and 65-meter-long dry-stone wall. The wall is embedded in a digitally planned and autonomously excavated landscape and park.[#item_full_content]

It isn’t easy for a robot to find its way out of a maze. Picture these machines trying to traverse a kid’s playroom to reach the kitchen, with miscellaneous toys scattered across the floor and furniture blocking some potential paths. This messy labyrinth requires the robot to calculate the most optimal journey to its destination, without crashing into any obstacles. What is the bot to do?It isn’t easy for a robot to find its way out of a maze. Picture these machines trying to traverse a kid’s playroom to reach the kitchen, with miscellaneous toys scattered across the floor and furniture blocking some potential paths. This messy labyrinth requires the robot to calculate the most optimal journey to its destination, without crashing into any obstacles. What is the bot to do?[#item_full_content]

In recent years, roboticists have introduced increasingly advanced systems, which could open exciting new possibilities for surgery, rehabilitation, and health care assistance. These robotic systems are already helping to improve the quality of life of many people with disabilities, as well as patients who suffered physical trauma or underwent medical procedures.In recent years, roboticists have introduced increasingly advanced systems, which could open exciting new possibilities for surgery, rehabilitation, and health care assistance. These robotic systems are already helping to improve the quality of life of many people with disabilities, as well as patients who suffered physical trauma or underwent medical procedures.[#item_full_content]

While most robots are initially tested in laboratory settings and other controlled environments, they are designed to be deployed in real-world environments, helping humans to tackle various problems. Navigating real-world environments entails dealing with high levels of uncertainty and unpredictability, particularly when robots are completing missions as a team.While most robots are initially tested in laboratory settings and other controlled environments, they are designed to be deployed in real-world environments, helping humans to tackle various problems. Navigating real-world environments entails dealing with high levels of uncertainty and unpredictability, particularly when robots are completing missions as a team.[#item_full_content]

Cambridge engineers investigating the load-bearing capacity of conical shells, made from soft materials, have discovered performance-limiting weaknesses that could have implications for soft robotics—affecting the ability of morphing cones to perform fundamental mechanical tasks.Cambridge engineers investigating the load-bearing capacity of conical shells, made from soft materials, have discovered performance-limiting weaknesses that could have implications for soft robotics—affecting the ability of morphing cones to perform fundamental mechanical tasks.[#item_full_content]

3D printing is advancing rapidly, and the range of materials that can be used has expanded considerably. While the technology was previously limited to fast-curing plastics, it has now been made suitable for slow-curing plastics as well. These have decisive advantages as they have enhanced elastic properties and are more durable and robust.3D printing is advancing rapidly, and the range of materials that can be used has expanded considerably. While the technology was previously limited to fast-curing plastics, it has now been made suitable for slow-curing plastics as well. These have decisive advantages as they have enhanced elastic properties and are more durable and robust.[#item_full_content]

An artificial sensory system that is able to recognize fine textures—such as twill, corduroy and wool—with a high resolution, similar to a human finger, is reported in a Nature Communications paper. The findings may help improve the subtle tactile sensation abilities of robots and human limb prosthetics and could be applied to virtual reality in the future, the authors suggest.An artificial sensory system that is able to recognize fine textures—such as twill, corduroy and wool—with a high resolution, similar to a human finger, is reported in a Nature Communications paper. The findings may help improve the subtle tactile sensation abilities of robots and human limb prosthetics and could be applied to virtual reality in the future, the authors suggest.[#item_full_content]

Hirebucket

FREE
VIEW