Recently published research assessed human trust when collaborating with eyed and non-eyed robots of the same type. The data suggest that humans might not need human-like machines to trust and work with them. Instead, they even seem to collaborate better with machine-like, eyeless machines.Recently published research assessed human trust when collaborating with eyed and non-eyed robots of the same type. The data suggest that humans might not need human-like machines to trust and work with them. Instead, they even seem to collaborate better with machine-like, eyeless machines.[#item_full_content]

Robots made of metal and other solid materials are already widely used in industry. But they are too rigid and cumbersome for fine-motor activities and interaction with people, such as in nursing or medicine. Intensive research is therefore already being carried out into robots made of soft materials: inspiration from nature, such as jellyfish, earthworms, fish or the human body should enable “soft robots” that can move flexibly and adapt to their environment.Robots made of metal and other solid materials are already widely used in industry. But they are too rigid and cumbersome for fine-motor activities and interaction with people, such as in nursing or medicine. Intensive research is therefore already being carried out into robots made of soft materials: inspiration from nature, such as jellyfish, earthworms, fish or the human body should enable “soft robots” that can move flexibly and adapt to their environment.[#item_full_content]

Evolutionary robotics is a sub-field of robotics aimed at developing artificial “organisms” that can improve their capabilities and body configuration in response to their surroundings, just as humans and animals evolve, adapting their skills and appearance over time. A growing number of roboticists have been trying to develop these evolvable robotic systems, leveraging recent artificial intelligence (AI) advances.Evolutionary robotics is a sub-field of robotics aimed at developing artificial “organisms” that can improve their capabilities and body configuration in response to their surroundings, just as humans and animals evolve, adapting their skills and appearance over time. A growing number of roboticists have been trying to develop these evolvable robotic systems, leveraging recent artificial intelligence (AI) advances.[#item_full_content]

To assist humans during their day-to-day activities and successfully complete domestic chores, robots should be able to effectively manipulate the objects we use every day, including utensils and cleaning equipment. Some objects, however, are difficult to grasp and handle for robotic hands, due to their shape, flexibility, or other characteristics.To assist humans during their day-to-day activities and successfully complete domestic chores, robots should be able to effectively manipulate the objects we use every day, including utensils and cleaning equipment. Some objects, however, are difficult to grasp and handle for robotic hands, due to their shape, flexibility, or other characteristics.[#item_full_content]

Robots based on soft materials are often better at replicating the appearance, movements and abilities of both humans and animals. While there are now countless soft robots, many of these are difficult to produce on a large-scale, due to the high cost of their components or their complex fabrication process.Robots based on soft materials are often better at replicating the appearance, movements and abilities of both humans and animals. While there are now countless soft robots, many of these are difficult to produce on a large-scale, due to the high cost of their components or their complex fabrication process.[#item_full_content]

A small team of mechanical engineers at Carnegie Mellon University, working with a colleague from the University of Illinois Urbana-Champaign, has designed and built what they describe as the simplest walking robot ever. They have written a paper describing the ideas they used to build the robot and the factors that have led to its simplicity and have posted it on the arXiv preprint server.A small team of mechanical engineers at Carnegie Mellon University, working with a colleague from the University of Illinois Urbana-Champaign, has designed and built what they describe as the simplest walking robot ever. They have written a paper describing the ideas they used to build the robot and the factors that have led to its simplicity and have posted it on the arXiv preprint server.[#item_full_content]

Tubificine worms are segmented worms that are capable of forming entangled blobs that behave as a single organism to adapt to extreme environmental conditions or migrate more efficiently. Individual worms are capable of elongating, entwining an uneven area of terrain and dragging the collective worm ball through a narrow passageway in laboratory experiments.Tubificine worms are segmented worms that are capable of forming entangled blobs that behave as a single organism to adapt to extreme environmental conditions or migrate more efficiently. Individual worms are capable of elongating, entwining an uneven area of terrain and dragging the collective worm ball through a narrow passageway in laboratory experiments.[#item_full_content]

Unmanned aerial vehicles (UAVs), commonly known as drones, are already used in countless settings to tackle real-world problems. These flying robotic systems can, among other things, help to monitor natural environments, detect fires or other environmental hazards, monitor cities and find survivors of natural disasters.Unmanned aerial vehicles (UAVs), commonly known as drones, are already used in countless settings to tackle real-world problems. These flying robotic systems can, among other things, help to monitor natural environments, detect fires or other environmental hazards, monitor cities and find survivors of natural disasters.[#item_full_content]

Coming to a tight spot near you: CLARI, the little, squishable robot that can passively change its shape to squeeze through narrow gaps—with a bit of inspiration from the world of bugs.Coming to a tight spot near you: CLARI, the little, squishable robot that can passively change its shape to squeeze through narrow gaps—with a bit of inspiration from the world of bugs.[#item_full_content]

Hirebucket

FREE
VIEW