A team of mechanical engineers at Chung-Ang University in South Korea has developed an exosuit that can help runners cover short distances faster. Their project is reported in the journal Science Robotics.A team of mechanical engineers at Chung-Ang University in South Korea has developed an exosuit that can help runners cover short distances faster. Their project is reported in the journal Science Robotics.[#item_full_content]

Small mobile robots carrying sensors could perform tasks like catching gas leaks or tracking warehouse inventory. But moving robots demands a lot of energy, and batteries, the typical power source, limit lifetime and raise environmental concerns. Researchers have explored various alternatives: affixing sensors to insects, keeping charging mats nearby, or powering the robots with lasers. Each has drawbacks: Insects roam, chargers limit range, and lasers can burn people’s eyes.Small mobile robots carrying sensors could perform tasks like catching gas leaks or tracking warehouse inventory. But moving robots demands a lot of energy, and batteries, the typical power source, limit lifetime and raise environmental concerns. Researchers have explored various alternatives: affixing sensors to insects, keeping charging mats nearby, or powering the robots with lasers. Each has drawbacks: Insects roam, chargers limit range, and lasers can burn people’s eyes.[#item_full_content]

Running on the beach versus a paved road can change an athlete’s stride, speed and stability. Alter the force of gravity, and that runner may break their personal record or sink into the ground. Researchers have to consider such parameters when designing extraterrestrial rovers and landers—which can trawl where no person has stepped foot.Running on the beach versus a paved road can change an athlete’s stride, speed and stability. Alter the force of gravity, and that runner may break their personal record or sink into the ground. Researchers have to consider such parameters when designing extraterrestrial rovers and landers—which can trawl where no person has stepped foot.[#item_full_content]

A new study by researchers at Queen Mary University of London, Imperial College London and The University of Melbourne has found that people can learn to use supernumerary robotic arms as effectively as working with a partner in just one hour of training.A new study by researchers at Queen Mary University of London, Imperial College London and The University of Melbourne has found that people can learn to use supernumerary robotic arms as effectively as working with a partner in just one hour of training.[#item_full_content]

A team of robotic and acoustic engineers from the Institute of Robotics and Intelligent Systems, ETH Zurich, and Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, has developed a microrobot that can be propelled through narrow tubes using sound waves. In their paper published in the journal Science Advances the group describes how they designed their robots and how well they worked when tested.A team of robotic and acoustic engineers from the Institute of Robotics and Intelligent Systems, ETH Zurich, and Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, has developed a microrobot that can be propelled through narrow tubes using sound waves. In their paper published in the journal Science Advances the group describes how they designed their robots and how well they worked when tested.[#item_full_content]

Mobile robots have become increasingly sophisticated and are now being deployed in a growing number of real-world environments, including airports, malls, museums, health care facilities and other settings. So far, however, most of these robots have been introduced in clearly defined indoor environments, as opposed to completing missions that would require them to travel across the city or explore unknown and unmapped spaces.Mobile robots have become increasingly sophisticated and are now being deployed in a growing number of real-world environments, including airports, malls, museums, health care facilities and other settings. So far, however, most of these robots have been introduced in clearly defined indoor environments, as opposed to completing missions that would require them to travel across the city or explore unknown and unmapped spaces.[#item_full_content]

In what is being called a milestone in mobile robotics, an AI-assisted drone has defeated drones controlled by humans in an obstacle course testing precision flight patterns and speed.In what is being called a milestone in mobile robotics, an AI-assisted drone has defeated drones controlled by humans in an obstacle course testing precision flight patterns and speed.[#item_full_content]

Soft inflatable robots have emerged as a promising paradigm for applications that require inherent safety and adaptability. However, the integration of sensing and control systems in these robots has posed significant challenges without compromising their softness, form factor, or capabilities.Soft inflatable robots have emerged as a promising paradigm for applications that require inherent safety and adaptability. However, the integration of sensing and control systems in these robots has posed significant challenges without compromising their softness, form factor, or capabilities.[#item_full_content]

A team of mechanical engineers at Cornell University, working with a colleague from Technion-Israel Institute of Technology, has designed and built a tiny robot that is powered by a combustion engine. In their paper published in the journal Science, the group describes how they built their tiny engine and possible uses for it. Ryan Truby, with Northwestern University, has published a Perspective piece in the same journal issue outlining the work done by the team on this new effort.A team of mechanical engineers at Cornell University, working with a colleague from Technion-Israel Institute of Technology, has designed and built a tiny robot that is powered by a combustion engine. In their paper published in the journal Science, the group describes how they built their tiny engine and possible uses for it. Ryan Truby, with Northwestern University, has published a Perspective piece in the same journal issue outlining the work done by the team on this new effort.[#item_full_content]

Researchers at the University of Washington have developed small robotic devices that can change how they move through the air by “snapping” into a folded position during their descent. The team published these results in Science Robotics.Researchers at the University of Washington have developed small robotic devices that can change how they move through the air by “snapping” into a folded position during their descent. The team published these results in Science Robotics.[#item_full_content]

Hirebucket

FREE
VIEW