Soft robotics have several key advantages over rigid counterparts, including their inherent safety features—soft materials with motions powered by inflating and deflating air chambers can safely be used in fragile environments or in proximity with humans—as well as their flexibility that enables them to fit into tight spaces. Textiles have become a choice material for constructing many types of soft robots, especially wearables, but the traditional “cut and sew” methods of manufacturing have left much to be desired.Soft robotics have several key advantages over rigid counterparts, including their inherent safety features—soft materials with motions powered by inflating and deflating air chambers can safely be used in fragile environments or in proximity with humans—as well as their flexibility that enables them to fit into tight spaces. Textiles have become a choice material for constructing many types of soft robots, especially wearables, but the traditional “cut and sew” methods of manufacturing have left much to be desired.[#item_full_content]
In recent decades, engineers have created a wide range of robotic systems inspired by animals, including four legged robots, as well as systems inspired by snakes, insects, squid and fish. Studies exploring the interactions between these robots and their biological counterparts, however, as still relatively rare.In recent decades, engineers have created a wide range of robotic systems inspired by animals, including four legged robots, as well as systems inspired by snakes, insects, squid and fish. Studies exploring the interactions between these robots and their biological counterparts, however, as still relatively rare.[#item_full_content]
How do you create a robot that can go places no one has ever seen before—on its own, without real-time human input? A team at NASA’s Jet Propulsion Laboratory that’s creating a snake-like robot for traversing extreme terrain is taking on the challenge with the mentality of a startup: Build quickly, test often, learn, adjust, repeat.How do you create a robot that can go places no one has ever seen before—on its own, without real-time human input? A team at NASA’s Jet Propulsion Laboratory that’s creating a snake-like robot for traversing extreme terrain is taking on the challenge with the mentality of a startup: Build quickly, test often, learn, adjust, repeat.[#item_full_content]
Centipedes are known for their wiggly walk. With tens to hundreds of legs, they can traverse any terrain without stopping.Centipedes are known for their wiggly walk. With tens to hundreds of legs, they can traverse any terrain without stopping.[#item_full_content]
When tackling missions as a team, robots should be able to coordinate their efforts, for instance, completing different sub-tasks, monitoring different parts of a target environment, and so on. Over the past few years, computer scientists have therefore been developing computational models designed to coordinate the actions and behaviors of different robots in a team.When tackling missions as a team, robots should be able to coordinate their efforts, for instance, completing different sub-tasks, monitoring different parts of a target environment, and so on. Over the past few years, computer scientists have therefore been developing computational models designed to coordinate the actions and behaviors of different robots in a team.[#item_full_content]
For decades, roboticists have been trying to develop robots that closely resemble humans, both in terms of their appearance and capabilities. Recent technological advances have opened exciting new possibilities for the creation of human-like robotic systems, for instance by introducing more advanced sensors and soft artificial skins.For decades, roboticists have been trying to develop robots that closely resemble humans, both in terms of their appearance and capabilities. Recent technological advances have opened exciting new possibilities for the creation of human-like robotic systems, for instance by introducing more advanced sensors and soft artificial skins.[#item_full_content]
Deep Blue vs. Kasparov. Watson vs. Ken Jennings and Brad Rutter. Deepmind vs. Atari. Alpha Go vs. Lee Sedol.Deep Blue vs. Kasparov. Watson vs. Ken Jennings and Brad Rutter. Deepmind vs. Atari. Alpha Go vs. Lee Sedol.[#item_full_content]
SoftZoo is a soft robot co-design platform that can test optimal shapes and sizes for robotic performance in different environments.SoftZoo is a soft robot co-design platform that can test optimal shapes and sizes for robotic performance in different environments.[#item_full_content]
Fast cars. Millions of us love them. The idea transcends national borders, race, religion, politics. We embraced them for more than a century, beginning in the early 1900s with the stately Stutz Bearcat and Mercer Raceabout (known as “the Steinway of the automobile world”), to the sexy Pontiac GTOs and Ford Mustangs of the 1960s, and through to the ultimate luxury creations of the Lamborghini and Ferrari families.Fast cars. Millions of us love them. The idea transcends national borders, race, religion, politics. We embraced them for more than a century, beginning in the early 1900s with the stately Stutz Bearcat and Mercer Raceabout (known as “the Steinway of the automobile world”), to the sexy Pontiac GTOs and Ford Mustangs of the 1960s, and through to the ultimate luxury creations of the Lamborghini and Ferrari families.[#item_full_content]
Recent progress in robotics has brought us startlingly lifelike replicas of humans and animals.Recent progress in robotics has brought us startlingly lifelike replicas of humans and animals.[#item_full_content]