Energy Innovation partners with the independent nonprofit Aspen Global Change Institute (AGCI) to provide climate and energy research updates. The research synopsis below comes from AGCI Program Director Emily Jack-Scott and AGCI Program Associate Devan Crane. A full list of AGCI’s updates covering recent climate change and clean energy pathways research is available online at https://www.agci.org/solutions/quarterly-research-reviews.

Recent research highlights how 65 percent of food system emissions come from the production, processing, transport, and consumption of just four emissions-intensive foods: beef, milk, rice, and corn (maize).

Faced with high food prices and continuous disruptions to supply chains, many households in the United States are appreciating afresh what it takes to grow, gather, and deliver the food they consume on a daily basis. But what the average consumer may not fully recognize is the extent to which their everyday food choices contribute to emissions of greenhouse gasses (GHGs). The food system as a whole accounts for a whopping 35 percent of global emissions, and consumer decisions like diet and shopping patterns greatly influence those emissions.

Emerging research is beginning to shed light on actions that consumers and producers can take to reduce food system impacts on the climate and move toward a “net-zero” system in which all emissions produced are offset by sequestration processes.

Emissions from farm to table to landfill

Emissions are generated at every stage of the food system, from the production of food on farms to transport and refrigeration to processing and packaging to consumer dietary choices and, ultimately, to food waste. Seventy percent of total food system emissions come from land-use change. For example, when a forest—which naturally absorbs and stores carbon dioxide as trees grow—is logged and converted to grazing or agricultural land, GHGs are released as trees decompose. Additional emissions result from tilling soils and applying fertilizers for agricultural production. The remaining food system emissions are attributable to other stages such as transport, packaging, and waste. With rising populations and growing appetites for emissions-intensive foods, emissions are projected to increase 50 percent by 2050 under business-as-usual conditions.

In a 2022 paper published in Nature Scientific Reports, Ciniro Costa, Jr., and colleagues highlight how 65 percent of food system emissions come from the production, processing, transport, and consumption of just four foodstuffs: beef, milk, rice, and corn (maize). By focusing on these emissions-intensive foods, the authors modeled 60 scenarios of interventions that could reduce emissions across the global food system. They found that a net-zero food system could be achieved through widespread adoption of system-wide efficiency improvements, shifts toward plant-forward diets, nature-based sequestration, and adoption of emerging technologies.

Most of the low-emissions interventions analyzed (70 percent) utilize existing know-how and technologies: reducing deforestation, better managing manure, improving feed and breeding (which can reduce methane emissions from livestock), reducing nitrogen fertilizer overuse and runoff, and adopting renewable energy and energy efficiency. Sequestration approaches such as agroforestry and low- or no-till agriculture also have significant co-benefits such as soil and water conservation. Greater adoption of low-emissions practices means less reliance on sequestration will be needed to achieve a net-zero emissions food system.

Emissions from food loss and waste

Reducing food loss and waste is an additional practice that Costa and colleagues emphasize. Food loss and waste alone account for 8-10 percent of all global GHG emissions (Ribbers et al., 2022), with approximately 1.3 billion tons of food perishing annually (Ouro-Salim and Guarieri, 2021). Food loss and food waste are often considered in tandem, but they are distinct issues. Food loss typically refers to loss of edible food before harvest or in the supply chain (e.g., due to inability to harvest all of a crop before it begins to rot, or poor refrigeration during transport). Food waste, by contrast, refers to loss of edible food due to consumer behavior, (e.g., over-ordering at a restaurant or poor planning that leads to groceries expiring and becoming inedible) (Kumar et al., 2022).

Notably, there are significant differences between high-income and low-income countries when it comes to food loss and waste. In high-income countries, food waste makes up 50 percent of overall losses, whereas food waste in low-income countries accounts for only 5 percent of overall losses (Kumar et al., 2022). In low-income countries, food loss is more of a problem and typically results from systemic challenges, such as lack of access to non-local markets, storage, transportation, refrigeration, and harvesting technology (Ouro-Salim and Guarieri, 2021). Reducing food waste in high-income countries is largely a voluntary act for the consumer, with very few waste-reduction enforcement policies in place (Stancu and Lähteenmäki, 2022).

Food waste can also vary by type of food, and high-nutrition foods like fresh produce are especially at risk of waste. Qin and Horvath found in their 2022 study published in Resources, Conservation & Recycling that in the U.S., household food waste can be the largest source of food loss emissions. In the case of cherries, for instance, extreme loss and waste nearly triple emissions: for every kilogram (2.2 lbs) of cherries consumed by a household, another kilogram is lost during production and transit, and a third kilogram is wasted post-purchase (see Figure 1).

Figure 1. “Sankey diagram for the production and food loss of one kilogram (2.2 pounds) of cherry consumption. Ec covers the life-cycle emissions for consumed food from production, packaging, transportation, and refrigeration in the truck, retail store, and consumer’s home. El covers the cradle-to-grave emissions from food loss.” Source: Qin and Horvath, 2022.

Reducing food loss and waste is one way households and individuals have the power to significantly reduce their climate impact, especially in high-income countries. So what holds us back? Why do so many U.S. consumers waste food, especially when it is increasingly expensive and in some instances sporadically available? And what other choices can consumers make to reduce emissions from the food they eat?

Psychology of reducing food waste

In a 2022 paper in Food Policy, co-authors Violeta Stancu and Liisa Lähteenmäki examined food-related behaviors that contribute to consumer food waste, including consumer self-identities, purchasing tendencies, and disgust sensitivity (how easily disgusted a person is by a food’s perceived edibility). They argue that a better understanding of these drivers can help inform more targeted policy and public awareness campaigns.

In a related paper in Global Environmental Change led by Daphne Ribbers, researchers investigated behavioral motivations akin to the consumer self-identities outlined by Stancu and Lähteenmäki. While the two concepts are similar, motivation “can be defined as the process that determines the … direction of behavior, and is generally understood as the reason why humans continue, or terminate a specific behavior” (Ribbers et al., 2023), whereas self-identities refer to “behaviors that are in line with … the label that people use to describe themselves” (Stancu and Lähteenmäki, 2022). Both studies examined the environmental, moral, financial, and social dimensions of these drivers of behavior.

Stancu and Lähteenmäki found that individuals with frugal and environmental self-identities and in older demographics were less likely to waste food, whereas individuals prone to impulse buying, with high disgust sensitivity, and with higher incomes were more likely to waste food. They also found that in-store marketing and retail stimuli can influence individuals to purchase more than was planned (impulse buying), leading to food waste. These factors point to an opportunity for awareness campaigns that can help consumers limit impulse buying and adopt mindful shopping behaviors. Retailers could also be held accountable to reduce food waste by using marketing strategies that don’t prey on impulsive tendencies.

Individuals who are more easily disgusted by perceived food imperfections were also found to be more wasteful. The perception that food was inedible was largely influenced by misunderstanding the common food-labeling system of “best-by” and “use-by” dates. “Best-by” dates relate to food quality, whereas “use-by” dates relate to food safety. Checking edibility by smell or taste when a food is past its labeling date, rather than automatically tossing food, could reduce food waste. Education campaigns focused on increasing food labeling knowledge could help lessen confusion and reduce food being thrown out prematurely.

Ribbers and colleagues found that consumers who waste less food were significantly motivated by environmental and moral factors: awareness of environmental impacts or feeling guilt about wasting food. Interestingly, financial and social motivations (frugality or the concern of appearing wasteful to others, respectively) were not significant motivations to avoid food waste. The authors caution that there may be instances in which financial motivations are significant and may be intertwined with environmental and moral motivations. As in Stancu and Lähteenmäki’s study, Ribbers found that older people typically waste less food.

Both papers also noted that future research should focus on behaviors and culturally specific motivations for more targeted solutions and policy.

Individual actions to reduce food emissions

In addition to reducing food waste, individual consumers have opportunities to limit their food emissions footprint by reducing superfluous packaging and by embracing dietary shifts.

Often consumers only consider the food waste they can physically see and touch, (e.g., scraping a plate into the trash at the end of a meal or forgetting a leftover box the restaurant packed up). In reality, consumers contribute to an entire waste cycle that stems from the energy and water used during production, harvest, material extraction, packaging creation, packaging, transportation, storage, consumption, and wastage/misuse (see figure 2). Consumers should also consider the end-of-life consequences of waste: pollution, millennia-long breakdown times, and overflowing landfills (Qin and Horvath, 2022).

Figure 2. Flow diagram of the food life cycle – encompassing an overview of the processes for inputs, opportunities for waste, and outputs. This cycle illuminates what may not be visible to the end consumer. Source: Qin and Horvath 2022.

For instance, use of plastic packaging has increased sharply in recent decades, from 2 million tons in 1950 to 381 million tons in 2015. Some packaging helps reduce waste by extending the shelf life of foods and protecting them during transport, but not all packaging has the same emissions. In a 2022 analysis in Resources, Conservation and Recycling, co-authors Mengqing Kan and Shelie Miller focused on the environmental impacts of plastic packaging across a food’s entire lifecycle as well as its annual consumption. The authors then compared the energy used over various foods’ life cycles to equivalent vehicle emissions to put the results into more familiar terms for non-scientists.

Figure 3. Translating the consumption impacts of certain food items into equivalent miles of vehicle travel allows individuals to put their own consumption habits in perspective with the typical daily activity of driving. The graph shows “break- even miles at which climate change of food packaging equals climate change of vehicle transportation.” Carbonated beverages being the biggest offender in the list of foods studied, shows that the equivalent impact of a one year’s consumption per capita is equal to 52.2 miles of GHG emissions (84 kilometers) which is nearly double of the daily average of 30 miles (48.3 kilometers) traveled by the US driver. Source: Kan and Miller 2022

Kan and Miller found that, based on average US per capita annual consumption rates, while emissions from food packaging are significant, for most products they pale in comparison to per capita emissions from other everyday activities like driving. Most of the food packaging in the study had annual per capita emissions equivalent to less than a day of driving (the average person in the U.S. drives 30 miles per day). Notable exceptions included carbonated beverages, crunchy chicken breast, certain types of milk, and bottled water. The authors also note significant co-benefits to limiting packaging, such as reducing the environmental impacts of extraction and disposal, especially for products disposed of improperly.

Dietary shifts are another significant way consumers can limit their personal food emissions. Virtually all scenarios that point to a net-zero food system rely on consumers shifting to a more plant-forward diet, especially in high-income countries. Demand for livestock products like beef and milk must be reduced by 10-25 percent to attain low-emissions or net-zero goals (Costa et al., 2022).

Livestock contribute to food system emissions through the food they consume and excrete, as well as the water and land needed for their production. In a 2022 paper published in the Proceedings of the National Academy of Sciences, Claudia Arndt and colleagues studied several ways to reduce methane gas emissions from livestock without reducing productivity by changing their diet formulations and grazing practices alongside breeding and genetic standards. Several combinations of mitigation strategies even increased animal production. The study found that adoption of any one of these strategies alone would not attain global emissions reduction goals by 2030, but adopting multiple effective strategies would achieve target reductions.

Reducing emissions at the livestock production stage is critical to overall reduction of food system-related GHG emissions. But ultimately, consumer demand for livestock products must be curbed to lower overall emissions. Development of new plant proteins is one way to shift consumer diets to meat alternatives and meal substitutions (Costa et al., 2022).

Beyond individual actions

 While individual consumers have a great deal of agency to curb emissions by reducing food waste and packaging and choosing more plant-forward diets, governments and investors must also design policies and financial mechanisms to lessen emissions throughout the food system.

Circular economy practices can help redirect food from landfills by donating still-good foods for human and animal consumption or channeling inedible foods to composting, bio products, and sewage/wastewater treatment facilities (Ouro-Salim and Guarieri, 2021).

In their scenarios to achieve a net-zero emissions food system, Costa and colleagues found that while most low-emissions interventions were based on existing technologies, only about 50 percent would be cost effective at a price less than $100/ton of carbon dioxide. They lay out the following timeline of actions most likely to achieve net-zero emissions while increasing production of food for growing populations, favoring the most cost-effective interventions in the near future:

Figure 4. “Roadmap for food systems net zero emissions by 2050.” The roadmap shows how the culmination of various techniques can lead to a reduction of GHG emissions to a neutral or net-zero state by 2050. Source: Costa et al. 2022

Governance and finance mechanisms will be needed to reduce deforestation and emissions from high-emitting crops and livestock and promote sequestration at the scale required to reduce global food emissions. For strategies that are already cost effective, traditional bank loans should be explored. To promote practices that are less cost effective, public dollars can be strategically invested in private ventures to reduce initial risks of early adoption and scale up carbon markets. The authors also spotlight the need for long-term philanthropic and patient private capital investments in high-risk emerging technologies.

Featured Research
Costa Jr, C., Wollenberg, E., Benitez, M., Newman, R., Gardner, N. and Bellone, F., 2022. Roadmap for achieving net-zero emissions in global food systems by 2050. Scientific Reports, 12(1), p.15064.
Kan, M. and Miller, S.A., 2022. Environmental impacts of plastic packaging of food products. Resources, Conservation and Recycling, 180, p.106156.
Kumar, S., Srivastava, M.S.K., Mishra, A. and Gupta, A.K., Ethically–Minded Consumer Behavior: Understanding Ethical Behavior of Consumer towards Food Wastage.
Ouro‐Salim, O. and Guarnieri, P., 2022. Circular economy of food waste: A literature review. Environmental Quality Management, 32(2), pp.225-242.
Qin, Y. and Horvath, A., 2022. What contributes more to life-cycle greenhouse gas emissions of farm produce: Production, transportation, packaging, or food loss?. Resources, Conservation and Recycling, 176, p.105945.
Ribbers, D., Geuens, M., Pandelaere, M. and van Herpen, E., 2023. Development and validation of the motivation to avoid food waste scale. Global Environmental Change, 78, p.102626.
Stancu, V. and Lähteenmäki, L., 2022. Consumer-related antecedents of food provisioning behaviors that promote food waste. Food Policy, 108, p.102236.

The post Reducing Food System Emissions, One Bite At A Time appeared first on Energy Innovation: Policy and Technology.

The food system accounts for 35 percent of global emissions, but new research shows how consumers and producers can act to reduce food system impacts on the climate and move toward a net-zero system.
The post Reducing Food System Emissions, One Bite At A Time appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

By Olivia Ashmoore

This week, Energy Innovation Policy & Technology LLC® and RMI published 48 state Energy Policy Simulator (EPS) models. The free, open-source, peer-reviewed, and nonpartisan EPS model empowers users to analyze the effects of hundreds of climate policies. EPS users can design policy packages that achieve net-zero greenhouse gas (GHG) emissions across the economy and pinpoint which policies are most effective at reducing emissions while creating economic and health benefits.

To illustrate how the EPS can inform state action, Energy Innovation® and RMI developed a five-policy scenario and modeled this policy package across six states. The six states have unique emissions profiles with Louisiana, Pennsylvania, and New Mexico having the largest industrial sectors, Minnesota and Michigan the largest transportation sectors, and Wisconsin the largest power sector. Our initial modeling highlights how just five policies, even in states with differing emissions profiles, can significantly cut emissions. Additionally, the five policies generate in-state jobs; our modeling shows that the six states analyzed could see between 13,000 and 118,000 new jobs in 2030. This analysis can help policymakers in any state, regardless of emissions profile, design and implement climate policy.

State EPS models can inform policy to close emissions reduction gaps

The United States government, as well as many state governments, have set ambitious targets to reduce GHG emissions and align with global efforts to solve climate change. While new Inflation Reduction Act investments will spur ample opportunities for transitioning to clean energy, additional state and federal policy action is needed to achieve U.S. climate goals. As states introduce policies to close the gap, policymakers, advocates, and researchers can drive state climate action using data-supported policy analysis.

With the release of the U.S. state EPS models, state policymakers now have detailed GHG emissions data at their fingertips. The state EPS models provide critical information–customized for each state–on forecasted emissions profiles, climate policy effectiveness, and economic impacts. The models provide results in real time, are free to use and modify, and are built using reputable, national data sources.

Energy Innovation® and RMI jointly built the 48 state-level EPS models* using publicly available state and federal data from sources such as the U.S. Bureau of Economic Analysis, U.S. Bureau of Labor Statistics, U.S. Energy Information Administration, the U.S. Environmental Protection Agency, and the National Renewable Energy Laboratory, among others. The models incorporate existing federal and state policy but do not yet incorporate the IRA. Only existing state laws and regulations as of January 2023 are included in the model. Proposed policies are not included, but the model can be used to assess the impacts of such proposals.

More information on our sources and methodology is available at https://docs.energypolicy.solutions/us-state-eps-methodology. The state EPS models are publicly available at https://energypolicy.solutions/us-states and can be run online and downloaded to run locally using free Vensim software.

Top five carbon-cutting policies bring the U.S. closer to meeting climate goals

Modeling the five-policy scenario by Energy Innovation® and RMI demonstrates how a small number of policies can effectively cut emissions, in states with quite different GHG sources. The five policies are: clean electricity standards, zero-emission vehicle standards, clean building equipment standards, industrial efficiency and emissions standards, and standards for methane detection, capture, and destruction. Together, these five policies constitute a bold policy plan to slash emissions across a state’s economy.

A Clean Electricity Standard requires retail electricity utilities to meet electricity sales with qualifying clean electricity sources, typically solar, wind, hydro, geothermal, and nuclear power. Many states already have clean electricity standards or renewable portfolio standards in place. In our scenario, we modeled an 80 percent clean energy by 2030 and 100 percent clean by 2035 requirement. In Pennsylvania, this policy accounted for the largest share of emissions reductions.

Zero-Emission Vehicle Standards require a share of newly sold vehicles to be zero-emission vehicles (ZEVs), usually battery electric vehicles. California recently enacted the Advanced Clean Cars II rule, which requires 100 percent light-duty passenger ZEV sales by 2035. Our modeled policy scenario aligns with California’s existing Advanced Clean Cars II rule and California’s Advanced Clean Trucks rule. In Wisconsin, this policy contributes 20 percent of total emissions reductions in the five-policy scenario in 2050.

Clean Building Equipment Standards require new building appliances shift from fossil fuel use in buildings to electricity. To address building sector emissions, newly installed building equipment should be fully electric, beginning with space heating and water heating in new construction, but eventually moving to all end uses in new and existing buildings. We modeled steadily increasing standards that require electric-only equipment in new and existing buildings by 2035. In Michigan, clean building equipment standards contribute 25 percent of total emissions reductions in the five-policy scenario in 2050.

Industrial Emissions Standards shift fossil fuel use to a mix of electricity and hydrogen for low-temperature and medium- to high-temperature heat processes. The modeling also assumes about a 5 percent reduction in fuel use relative to business-as-usual by 2030 with continued progress to 14 percent by 2050 with energy efficiency improvements that help comply with the emissions standard. In Louisiana, because the industrial sector accounts for most of the state’s emissions, industrial emissions standards account for greater emissions reductions than all the other policies combined.

Standards for Methane Emissions require methane leaks—primarily from fossil fuel extraction and transport, agriculture, and landfills—to be identified and captured. The five-policy scenario includes strong methane capture and destruction. The standards result in emissions reductions equal to capturing 100 percent of the potential methane mitigation by 2030 modeled by the EPA. In New Mexico, methane emissions standards contribute 24 percent of total emissions reductions in the five-policy scenario in 2050.

Economic Benefits

The five-policy scenario also yields gross domestic product (GDP) and job benefits for each of the six states. Our modeling shows that the six states analyzed could see between 13,000 and 118,000 new jobs and between 1 percent and 3 percent GDP growth in 2030.

Health Benefits

Policies to transition to clean energy technologies also deliver public health benefits by cutting harmful pollutants such as particulate matter 2.5, sulfur oxides, and nitrogen oxides. Our modeling shows that the six states analyzed could avoid between five and 300 premature deaths annually in 2030 and prevent between 90 and 3,800 asthma attacks and 400 and 20,000 lost workdays annually in 2030.

Conclusion

The state EPS models provide reputable, real-time modeling results and integrated analysis of economic and public health co-benefits. Modeling five policies in six states demonstrates how state EPS models can be used to design policy packages that effectively reduce emissions, create jobs, and improve health. As states develop climate action plans and evaluate how to achieve their GHG targets, the state EPS models are an indispensable tool. Policymakers and other stakeholders can reach out to Energy Innovation® and RMI for assistance by emailing policy@nullenergyinnovation.org.

The post Energy Innovation Policy & Technology® and RMI Launch 48 U.S. State EPS Models appeared first on Energy Innovation: Policy and Technology.

Energy Innovation Policy &Technology LLC® and RMI developed 48 state Energy Policy Simulator (EPS) models to help policymakers design impactful climate policies. To show how the EPS can inform decision-making, Energy Innovation® and RMI modeled a five-policy scenario across six states, finding five top policies that can dramatically cut state greenhouse gas emissions, grow state economies, and prevent thousands of asthma attacks.
The post Energy Innovation Policy & Technology® and RMI Launch 48 U.S. State EPS Models appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

By Robbie Orvis

The free and open-source Energy Policy Simulator (EPS) computer model developed by Energy Innovation Policy & Technology LLCTM has become one of the most widely used tools to inform policymakers and regulators about which climate and energy policies will reduce greenhouse gas emissions most effectively, creating the largest economic and public health benefits.

With EPS models now used in 10 countries and 48 states across America, we’re often asked how the EPS works and what peer review it has undergone through its development.

The EPS is a System Dynamics computer model created in Vensim, a tool produced by Ventana Systems for the creation and simulation of System Dynamics models. The model is designed to be used with the free Vensim Model Reader, and directions on obtaining Vensim Model Reader and the EPS are available on the Download and Installation page. As an open-source modeling tool, users can access the model via the energypolicy.solutions website. To use advanced features or modify its input data, users may download the EPS and run it locally on their Mac or Windows PC. All of the input data is meticulously cited, publicly available, and freely accessible and editable, with results updated instantly.

The EPS allows users to model numerous policies that affect energy use and emissions including a renewable portfolio standard, fuel economy standards for vehicles, industry methane standards, incentives for clean energy technologies like we see in the Inflation Reduction Act, and accelerated R&D advancement of various technologies. These policies can be applied across every major sector of the economy including transportation, electricity supply, buildings, industry, agriculture, and land use. The EPS also includes smaller components like hydrogen supply, district heat, waste management, and geoengineering.

The model reports outputs at annual intervals and provides numerous outputs, including:

Emissions of 12 different pollutants including carbon dioxide, nitrogen oxides, sulfur oxides, and fine particulate matter, as well as carbon dioxide equivalent (CO2e) which measures the global warming potential of various pollutants.
Direct cash flow (cost or savings) impacts on government, non-energy industries, labor and consumers, and five energy-supplying industries.
Direct, indirect, and induced impacts on jobs, GDP, and employee compensation, as a whole or disaggregated into 36 economic categories.
Premature mortality and 10 other health-related outcomes avoided from reduced primary and secondary particulate pollution.
The composition and output of the electricity sector (e.g., capacity and generation from coal, natural gas, wind, solar, etc.).
Vehicle technology market shares and fleet composition including electric vehicles.
Energy use by fuel type from various energy-using technologies including specific types of vehicles and building components.
Breakdowns of how each policy within a policy package contributes to total abatement and the cost-effectiveness of each policy (e.g., wedge diagrams and cost curves).
Fuel imports and exports, and associated expenditures or revenues.

All methodologies underpinning the EPS have undergone extensive peer review as they were developed, and we continually seek input from outside experts to modify the methodologies to address any concerns that are raised. Components of the model have been reviewed by individuals from prestigious institutions including:

American Council for an Energy-Efficient Economy
Argonne National Laboratory
Lawrence Berkeley National Laboratory
Massachusetts Institute of Technology
National Renewable Energy Laboratory
RMI
Stanford University
Tufts University
University of Chicago
U.S. Environmental Protection Agency
World Resources Institute

National labs, universities, and partners who have peer reviewed the Energy Policy Simulator

The post How The Energy Policy Simulators Work And Are Developed appeared first on Energy Innovation: Policy and Technology.

An overview of how the Energy Policy Simulator works and what peer review it undergoes during model development.
The post How The Energy Policy Simulators Work And Are Developed appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

Energy Innovation Policy & Technology LLC® partners with the independent nonprofit Aspen Global Change Institute (AGCI) to provide climate and energy research updates. The research synopsis below comes from AGCI’s Climate Science Fellows Tanya Petach and Emilio Mateo. A full list of AGCI’s updates covering recent climate change and clean energy pathways research is available online at https://www.agci.org/solutions/quarterly-research-reviews.

This year, as the Colorado River Basin enters its 23rd consecutive year of drought, water users across the Southwest are grappling with the consequences. As water managers, elected officials, municipal planners, farmers, and tribes all prepare for the high-stakes renegotiation of the Colorado River Compact, scientists are critically examining historical research on the river’s flow to ensure water users across the western United States and Mexico have the information they need to prepare for a future where drought is the norm.

Using Historic Records to Make Sense of the Colorado River’s Future

Connecting the Rocky Mountains to the Gulf of California, the Colorado River shepherds snowmelt from the high peaks in Colorado, Wyoming, and Utah some 1,400 miles across the arid deserts of New Mexico, Nevada, Arizona, California, and Mexico. Because more than 70 percent of the water in the Colorado River originates as snow, year-to-year flow varies in tandem with the Rocky Mountain snowpack. As a result, the Colorado River has oscillated between extremes; withering droughts and catastrophic floods are both peppered throughout the river’s paleorecord.

Using clues from environmental indicators like pollen records and tree-ring widths, paleoclimate conditions in the Colorado River Basin have been mapped as far back as 1 CE (Common Era). The data tell a clear story: extreme, persistent, and severe droughts have long characterized the Colorado River. After one notably severe drought struck the Colorado River Basin near the end of the 13th century, the Ancestral Puebloans, a group who had inhabited the Colorado Plateau for the prior millennium, migrated out of the area into the Rio Grande region.

Paleoclimate reconstructions of historic river flows aren’t a particularly new research technique. Ever since scientists developed the first tree-based paleorecord of Colorado River droughts in 1965, the looming threat of a severe Colorado River drought has concerned the water sector. In 1995, a team of scientists coordinated through the Powell Consortium studied the consequences of a hypothetical severe, sustained drought in the Colorado River Basin. Their research, published in the Journal of American Water Resources (JAWRA) and frequently referred to as the “SSD study,” has been a catalyst for water managers, policymakers, and water users in the decades since its publication.

The SSD study was, remarkably, published in a non-drought era. The two largest reservoirs on the river, Lake Powell and Lake Mead, were both filled to the brim, and annual snowpack hovered comfortably around average at the time of publication. Equally notable is the fact that the study focused not only on the hydrologic impacts of a hypothetical drought, but also on the social, economic, and environmental impacts that drought would have on the Southwest. The authors addressed creative, preventive institutional alternatives for coping with drought, even dipping a toe into near-taboo controversies in the Colorado River Basin, such as interstate water marketing.

The SSD study hinged upon paleoclimate records in the Colorado River Basin. It began with a tree-ring analysis to identify the most severe drought period on record in the Basin (in this analysis, a late 16th-century drought), which was then used as a template for a hypothetical drought scenario. The hypothetical drought’s intensity was increased by reordering the years of the 16th-century drought such that streamflow decreased sequentially for the first 16 years, followed by a period of higher flow until the river returned to conditions within the “normal” range.

The modeled fallout of this hypothetical drought was split between the Upper Basin (Colorado, Utah, Wyoming, New Mexico, and part of Arizona) and the Lower Basin (the rest of Arizona, Nevada, and California). The SSD predicted that Upper Basin states would experience heavy water cuts while Lower Basin states would see fewer impacts. Hydropower outputs from dams steadily decreased during the early years of the drought, with a marked drop in hydropower output in the middle of the drought after Lake Powell fell below minimum powerpool (the elevation at which water can no longer exit reservoirs through turbines and generate hydropower).

In the SSD scenario, Lake Powell reached an elevation too low for water to exit the reservoir from any outlet pipes—a phenomenon often referred to as deadpool—near the end of the theoretical drought, after which the modeled drought eventually ended, reservoirs re-equilibrated, and the Colorado River returned to normal operating conditions. The SSD asserts that “the simulations show that the Colorado River system would be remarkably resilient in the face of an exceptionally extreme, even unrealistic drought of the sort postulated in this study.”

Despite eventual recovery in the Colorado River Basin, years of deadpool conditions in major reservoirs and extreme water cuts to municipalities and agricultural uses wreaked havoc across the Southwest in the modeled SSD scenario. The authors published a suite of preventive recommendations for water managers in the Basin, suggesting alternative governance structures that could (1) reallocate water from low- to high-value uses during times of shortage, (2) manage reservoirs to minimize evaporative losses, and (3) maintain powerpool in reservoirs.

Just five years after the SSD was published, the Colorado River entered what would become known as the “millennium drought,” a 23-year (and counting) period of low flows, dwindling reservoir supplies, and changing hydrology across the Southwest. The current drought is not as severe as the one hypothesized in the SSD, but flows have averaged just 75 percent of total allocated water rights, and Lake Powell is barely above minimum powerpool elevations. Some of the predictions in the SSD have struck close to home (e.g., intense water use cuts, depleted reservoirs, hard trade-offs between environmental and economic water uses); others have not (yet) occurred.

Future Impacts in a Changing Climate

In 2022, the Colorado River science community reviewed the SSD and contextualized it within the millennium drought by publishing a suite of studies in a special issue for the same JAWRA journal (Frisvold et al., 2022). These studies reevaluate the SSD with more powerful computers, a deeper understanding of climate change, and two decades of hands-on drought experience.

The 2022 special issue is steeped in the context of climate change. Updated models presented in the special issue incorporate global climate models and tend to predict streamflow outcomes more accurately than previous models. Current streamflow projections published in the special issue indicate that flow will likely continue to decline in the face of climate change and increasing temperatures and that reservoir levels are unlikely to recover as quickly or to the full extent projected at the end of the SSD.

Average annual temperature for the southwest climate region, through which the Colorado River flows. Trends indicate that annual temperatures are increasing both in terms of extreme events (seven of the eight years on record in which annual temperature exceeded 54 degrees F have occurred since 2003) and average trends (see the 30-year distributions to the right). Figure from McCoy et al., 2022 (one of the many studies that make up the 2022 special issue)

Whereas the 1995 study characterized the drought scenario as “exceptionally extreme, even unrealistic,” many of the studies that make up the 2022 special issue do not investigate the possibility of a drought-free future scenario at all but assume that the millennium drought will continue in the near future. Despite these differences, the 2022 special issue mirrors the SSD as a dazzling example of scientists bridging the research-practice boundary. Across the board, the special issue presents scientific findings in parallel with calls for creativity and resilience in the face of a bleak outlook for the Colorado River Basin.

Projected streamflow declines presented in the special issue are paired with a suggestion to create systems to reallocate water across uses, not just between users in the same sector. A study on the shaky future of recreation on Lake Mead and Lake Powell highlights the need for lakeside communities to diversify economic interests beyond reservoir tourism. The threat of Lake Powell and Lake Mead dropping below deadpool poses significant challenges to the environment in and around the Colorado River, particularly fish and riparian habitats. Temperature swings and the possibility of entirely dry stretches of river lead ecologists to stress the importance of significantly reducing water use across the entire Colorado River Basin in order to increase reservoir storage.

Moreover, the 2022 special issue expands its investigation beyond the impacted water users highlighted in the SSD to include both tribes and Mexico. A dive into the economic impacts of decreased irrigation water on reservations, including the Navajo, Tohono O’odham, and Uintah and Ouray Nations, projects reduced hay yields and even greater decreases in cattle yields. Another study in the special issue investigates the successes and challenges of trans-boundary restoration efforts in the Colorado River Delta. While habitat restoration has been successful and a common goal for both the United States and Mexico, restored areas are small and rely on continued support and water delivery from a shrinking water supply.

Colorado River Delta as seen from space. Visible are both Isla Montague, the island created by the delta, and the Desierto de Altar, the desert on the right half of the image. The delta, once prized for its biodiversity, is struggling due to limited water supply. Recent restoration efforts have successfully begun restoring small areas, but these efforts require continued water supplies. Photo: Earth Observations Laboratory, Johnson Space Center.

The 2022 special issue provides an update on the SSD and an expansion of represented interests. Both publications paint a bleak picture of a drought-stricken U.S. Southwest, and given the reality of increased impacts from climate change, a respite feels unlikely. However, the Colorado River’s headwater snowpack is currently well above average in January 2023 (though that could change over the remainder of the winter) despite tentative projections this fall for a bleak snowpack. In the context of a multi-decade drought, one (potentially) good year’s snowpack won’t lift the basin out of water scarcity. But it may provide a short window for the Colorado River Basin to catch its breath and for the scientific community to join forces with water managers and users across the Southwest to implement creative, innovative solutions in the 11th hour of this wicked problem.

Works Cited:
Linda S. Cordell et al., “Mesa Verde Settlement History and Relocation: Climate Change, Social Networks, and Ancestral Pueblo Migration,” Kiva 72, no. 4 (2007): 379-405.
Ryan S. Crow et al., “Redefining the Age of the Lower Colorado River, Southwestern United States,” Geology 49, no. 9 (2021): 635-640.
H.C. Fritts, “Tree-Ring Evidence for Climatic Changes in Western North America,” Monthly Weather Review 93 (1965): 421-443.
Subhrendu Gangopadhyay et al., “Tree Rings Reveal Unmatched 2nd Century Drought in the Colorado River Basin,” Geophysical Research Letters 49, no. 11 (2022): e2022GL098781.
Eric Kuhn and John Fleck, Science Be Dammed: How Ignoring Inconvenient Science Drained the Colorado River (Tucson: University of Arizona Press, 2019).
Andrea J. Ray et al., “Climate Change in Colorado: A Synthesis to Support Water Resources Management and Adaptation,” Colorado Water Conservation Board Rep 52 (2008).
Connie A. Woodhouse, Stephen T. Gray, and David M. Meko, “Updated Streamflow Reconstructions for the Upper Colorado River Basin,” Water Resources Research 42, no. 5 (2006).
Mu Xiao and Dennis P. Lettenmaier, “Atmospheric Rivers and Snow Accumulation in the Upper Colorado River Basin,” Geophysical Research Letters 48, no. 16 (2021): e2021GL094265.
Featured Collections Cited:
George B. Frisvold et al., “Featured Collection: Severe Sustained Drought: Managing the Colorado River System in Times of Water Shortage 25 Years Later—Part I,” JAWRA Journal of the American Water Resources Association 58, no. 5 (2022): 597-784.
Robert A. Young et al., “Featured Collection: Severe Sustained Drought: Managing the Colorado River System in Times of Water Shortage,” JAWRA Journal of the American Water Resources Association 31, no. 5 (1995): 780-944.

The post Then And Now: Scientific Investigations Of Colorado River Drought A Quarter Century Apart appeared first on Energy Innovation: Policy and Technology.

As the Colorado River Compact is renegotiated, scientists are critically examining historical research on the river’s flow to ensure decision-makers across the western United States and Mexico have the information they need to prepare for a future where drought is the norm.
The post Then And Now: Scientific Investigations Of Colorado River Drought A Quarter Century Apart appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

Coal Cost Crossover 3.0 Interactive Visual Feature

This visual interactive feature allows users to explore the major findings of the Coal Cost Crossover 3.0 report. Users can scroll to view a visual case study, interactive maps showing the specific locations of uneconomic coal plants and cheaper new solar or new wind resources, potential cost savings, and investment opportunities. Scroll the white box to view the feature.



The post Coal Cost Crossover 3.0 Interactive Visual Feature appeared first on Energy Innovation: Policy and Technology.

This visual interactive feature allows users to explore the major findings of the Coal Cost Crossover 3.0 report. Users can scroll to view a visual case study, interactive maps showing the specific locations of uneconomic coal plants and cheaper new solar or new wind resources, potential cost savings, and investment opportunities.
The post Coal Cost Crossover 3.0 Interactive Visual Feature appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

Energy Innovation Policy and Technology LLC® is proud to announce that Sonia Aggarwal will become its new CEO, starting in late February.

©2019 Ed Ritger. All Rights Reserved, Image courtesy of Climate One/The Commonwealth Club SAN FRANCISCO

Sonia was a founding director of Energy Innovation more than a decade ago. She built Energy Innovation’s policy research, modeling, and analysis teams over eight years until she was appointed to serve in the Biden administration. Sonia has deep experience in energy modeling, analysis, and policy design in many of the world’s largest-emitting countries and regions. Her technical expertise is just as notable, with degrees in astronomy, physics, and engineering

Sonia’s new role will include leading the organization and working closely with partners and policymakers to design and implement the most effective climate and clean energy policies in key jurisdictions across North America, Asia, and Europe.

“I am thrilled to return home to Energy Innovation, with its sharply aimed work and matchless talent,” said Sonia Aggarwal. “Climate policy is at an inflection point, and we, alongside our partners, must capitalize on this moment-Energy Innovation is my ideal home for this challenge.”

Sonia’s career has consistently been marked by taking on complex challenges to increase climate ambition, and winning those challenges. Her most recent posting was in the Biden White House where she served as Special Assistant to the President for Climate Policy, Innovation, and Deployment. While there, Sonia helped to set the nation’s high level climate targets including the commitment to cut economy-wide greenhouse gases by 50-52 percent below 2005 levels in 2030. She advanced climate policy priorities in Congress and the federal government to help the U.S. cut emissions at the speed required by climate science while creating good jobs, cutting costs for families, strengthening and securing the economy, and pursuing environmental justice for all communities. She also co-chaired the Biden administration’s Climate Innovation Working Group, and focused federal initiatives to reinvigorate clean energy manufacturing across the country. This work, and that of her colleagues, is now enshrined in the Inflation Reduction Act and Bipartisan Infrastructure Law, as well as other important legislative, regulatory, innovation, and manufacturing advances.

Energy Innovation—and Sonia—are steadfastly committed to nonpartisan climate action with Democrats and Republicans at the federal, state, and local levels in the U.S., along with a broad range of policymakers across the world. The organization enthusiastically seeks opportunities to work with leaders who want to advance climate change solutions that work for people and their communities.

Hal Harvey will remain at Energy Innovation in the role of Founder where he will continue to lead aspects of our international work, counsel policymakers on emissions reduction strategies, build our energy security portfolio, and continue his life-long commitment to advancing ambitious climate policies that drive real-world impact.

“Those of you who know Sonia will instantly understand why we are so thrilled to have her rejoin Energy Innovation as our CEO,” said Hal Harvey. “She has the technical depth, the political insights, and a stunning real-world track record-all complemented by exceptional emotional intelligence. Please join me in welcoming her!”

The post Sonia Aggarwal Returns To Energy Innovation As CEO appeared first on Energy Innovation: Policy and Technology.

Energy Innovation Policy and Technology LLC® is proud to announce that Sonia Aggarwal will become its new CEO, starting in late February.
The post Sonia Aggarwal Returns To Energy Innovation As CEO appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

Energy Innovation partners with the independent nonprofit Aspen Global Change Institute (AGCI) to provide climate and energy research updates. The research synopsis below comes from Savannah D’Evelyn, Ph.D., an environmental health scientist and bio-social scientist at the University of Washington. A full list of AGCI’s updates covering recent climate change and clean energy pathways research is available online at https://www.agci.org/solutions/quarterly-research-reviews.

In 2020, 25 million people across the United States were exposed to dangerous levels of wildfire smoke. This is a massive increase from just 10 years ago, when less than half a million people were exposed to unhealthy levels of smoke pollution. The recent spike in smoke exposures across the U.S.—often thousands of miles away from the fire itself—has brought wildfires and their smoke into the national spotlight. In recent years, smoke has become so commonplace in the summer that many people have started referring to fire season as a fifth season. As wildfires become more frequent and severe and extend into the fall and spring, residents in smoke-impacted regions must work to ensure their communities are not only fire-safe, but smoke-ready.

The concept of a “smoke-ready community” is relatively new. The U.S. Forest Service (USFS) started using the term in 2016 and has since partnered with the U.S. Environmental Protection Agency (EPA) to help communities prepare for the impacts of smoke during worsening fire seasons. The Interagency Wildland Fire Air Quality Response Program—a group within the USFS—defines smoke readiness as when “communities and individuals have the knowledge and ability to stay reasonably safe and healthy during smoke episodes.” While the definition is straightforward, implementation in smoke-impacted communities is complex—especially as the number of communities impacted by wildfire smoke grows with each season.

In order to stay safe and healthy during smoke season, both community leaders and individuals need to understand the health impacts of exposure, know the interventions they can take to mitigate health risks, have access to accurate air quality data, and most importantly, have access to clean indoor air. Recent research underscores opportunities to improve smoke readiness across these dimensions.

Understanding the health impacts of exposure

Improved communication around both the health impacts of smoke exposure and the steps that can be taken to reduce these exposures is essential to creating a smoke-ready community. Children, the elderly, outdoor workers, and people with pre-existing conditions are among those most impacted by exposure to wildfire smoke. Health risks of smoke exposure for these populations include decreased lung function, exacerbation of existing respiratory and cardiovascular disease, and increased risk of cardiac and neurologic events, among others. But healthy, adult populations are also susceptible to these risks. Short-term exposure can lead to minor symptoms such as eye, nose, and throat irritation, headaches, coughing, and wheezing.

The Confederated Tribes of the Colville Reservation, the Okanogan River Airshed Partnership, and the University of Washington recently collaborated to interview residents in rural Washington about their perception of smoke from wildland fire. Many participants shared that while they were concerned for their kids or grandparents, they didn’t think smoke was affecting them personally. Several participants commented on the acute, short-term impacts they experienced such as coughing or headaches, but explained that learning more about the health effects hadn’t been a priority.

Beyond the physical toll wrought by wildfire exposure, a study led by Anna Humphreys published in BMC Public Health investigated how community exposure to prolonged wildfire smoke impacted residents’ mental health and wellbeing. The authors found the main health impacts to be anxiety, depression and stress, respiratory illnesses, and exacerbation of pre-existing conditions, while social impacts included isolation and cancellation of community events. Both studies identified a need for improved communications around the health impacts of smoke exposure and the need for community resources to stay safe and healthy.

Interventions to mitigate health risk

Michael B. Hadley and colleagues proposed a list of individual and community-based interventions that can reduce the health risks of smoke exposure in a recent paper published in the American Heart Association journal Circulation. The paper states that while the physical health impacts of smoke exposure are significant, they are also avoidable. In particular, the authors suggest that intentional engagement with healthcare systems in intervention planning could be beneficial to smoke-readiness.

The study went on to identify key interventions, including
● preparing healthcare systems for wildfire smoke;
● identifying and educating vulnerable populations;
● minimizing outdoor activities;
● improving access to cleaner air environments;
● increasing use of air filtration devices and personal respirators; and
● aggressive management of chronic diseases and traditional risk factors.

These interventions could reduce a wide range of the physical impacts of smoke exposure if implemented by individuals, healthcare organizations, and communities as a whole. It is also important that these interventions are not only considered during smoke season, but before, during, and after smoke events (Figure 1).

Figure 1 – Many communities have developed their own guidance on how to prepare for smoke season. This infographic developed by the South Coast Air Quality Management District is part of a series that details steps that can be taken before, during, and after smoke events in order to reduce exposure and mitigate health impacts.

Access to accurate air quality information

Unfortunately, many communities lack access to the air quality information they need to make informed decisions and to implement these types of interventions. Neighborhood-specific air quality data is limited in rural regions and EPA-regulated air quality monitors are often clustered around urban areas, leaving rural areas without accurate or reliable air quality information. This can be particularly challenging when the air is smoky, as air quality levels can change quickly by neighborhood and accurate information is needed to make informed decisions.

For a paper published in the International Journal of Environmental Research and Public Health, Amanda Durkin and co-authors examined the motivations and experiences of residents who agreed to host an air quality monitor in their homes as part of a low-cost community monitoring network. Residents stated that they used the monitors throughout smoke season to understand air quality conditions and make decisions to minimize exposure, such as determining when to wear an N95 mask, finding clean air elsewhere in the region, and deciding to exercise indoors or outdoors.

Access to clean air

Communities faced with poor air quality are commonly told to remain indoors. While not realistic for everyone, this recommendation also assumes that indoor air quality is significantly better than outdoor air. In a Proceedings of the National Academy of Sciences (PNAS) study led by Yutong Liang, authors crowdsourced indoor and outdoor air quality data from PurpleAir sensors in homes around the San Francisco and Los Angeles metropolitan areas during the 2020 fire season. Authors found that indoor particulate matter (PM) tripled on fire days compared to indoor air on non-fire days, and that infiltration of smoke was significantly worse in homes built before 2000.

Steps can be taken to improve indoor air quality, such as improving the seals around doors and windows, upgrading HVAC systems with higher quality filters, or introducing portable air cleaners. A study led by Jianbang Xiang in Science of The Total Environment measured PM levels in homes during the 2020 smoke season in Seattle and found that while infiltration rates were high, HEPA-based portable air cleaners significantly reduced indoor PM levels. Increased use of air cleaners—especially for more vulnerable populations—could have a significantly positive impact on health during smoke season.

Based on this information, several communities have implemented portable air cleaner loan programs during fire season. In northern California, the Bay Area Air District has partnered with the Public Health Institute to provide over 3,000 portable air filtration units to low-income residents diagnosed with poorly controlled asthma. The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) has also developed Guideline 44P to provide HVAC and building measures to minimize occupant exposures during wildfire smoke events (Figure 2).

Figure 2: This flowchart for creating smoke-ready buildings was developed by ASHRAE as part of its Planning Framework for Protecting Commercial Building Occupants from Smoke during Wildfire Events. This framework also outlines how to develop a smoke-readiness plan and lists additional resources for communities to prepare for smoke season.

Some communities are working to improve access to clean air for residents by implementing clean air centers, or community buildings that can reliably provide improved air quality during periods of wildfire smoke. Of course, these spaces come with their own challenges. In a study led by Ryan J. Treves published in Society and Natural Resources, researchers interviewed both government employees involved in the implementation of clean air centers as well as community members impacted by smoke exposure in California. The challenges of implementing an effective clean air center included poor communication with vulnerable populations and the inability to provide transportation and access to those most in need. Community participants described feeling unprepared for and frightened by smoke season. While they were interested in the concept of clean air centers, they lacked the knowledge about how to access and utilize them.

The literature on the utilization and efficacy of clean air centers is incredibly limited. In a web series on clean air spaces hosted by the EPA, experts identified designated clean air spaces as an area of future research, noting that clean air centers could potentially be effective in building community resilience to smoke if combined with other interventions.

Conclusion

In the (currently hypothetical) ideal smoke-ready community, everybody is aware of the health impacts of smoke exposure and knows what steps they can take to reduce exposure; all individuals have access to accurate and reliable air quality information that can inform their decisions around smoke exposure, regardless of the community’s location; and all residents have access to clean air, whether they are an at-risk individual, outdoor worker, or a healthy adult. Wildfires are not going away anytime soon. As more communities are exposed, additional research can help us better understand the health effects of smoke exposure and the best measures to mitigate harm. This research, combined with additional resources and capacity, can ensure communities are ready when the smoke inevitably comes.

The post Smoke-Ready Communities: Learning To Live With Wildfire Smoke appeared first on Energy Innovation: Policy and Technology.

In order to stay safe and healthy during wildfire smoke events, communities need to understand the health impacts of exposure, know the interventions they can take to mitigate risks, have access to accurate air quality data, and most importantly, have access to clean indoor air. Recent research underscores opportunities to improve smoke readiness across these dimensions.
The post Smoke-Ready Communities: Learning To Live With Wildfire Smoke appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

Energy Innovation partners with the independent nonprofit Aspen Global Change Institute (AGCI) to provide climate and energy research updates. The research synopsis below comes from AGCI’s Climate Science Fellow Tanya Petach. A full list of AGCI’s updates covering recent climate change and clean energy pathways research is available online at https://www.agci.org/solutions/quarterly-research-reviews.

Wildfires are increasing in intensity, frequency, and size, decimating ecosystems and devastating communities from the western United States to Australia, the Mediterranean, and the Amazon. The 2018 wildfire season generated $149 billion in damages in California, equivalent to 1.5 percent of the state’s gross domestic product. Wildfires are often heralds of change for the landscapes they burn, not only harming humans and other organisms but also leaving behind drastically altered ecosystems. As worries about the impacts of wildfires grow, researchers are ramping up efforts to understand wildfires’ water quality repercussions in both natural waters and distribution systems.

Public concerns about water quality tend to focus, understandably, on bacteria, viruses, and other waterborne pathogens, which account for 4 billion cases of waterborne illness and 1.8 million related deaths across the globe each year. Less widely recognized threats, like dissolved metals and other molecular health hazards, lurk in runoff from industrial sources, home waste, and building materials. But the $300 billion global bottled water industry is propelled not just by actual threats to human health from municipal and shared drinking water sources. Indicators like color and taste can lead to perceived water quality concerns, regardless of whether the molecules impacting color and taste affect human health. Wildfires can contribute to all of these areas of concern: pathogen transport, dissolved toxins, and perceptions of inferior water quality.

Historically, wildfires have been linked to adverse water quality in headwaters basins. In these basins with relatively few human-built structures, wildfires tend to primarily burn vegetation and produce ash high in organic carbon, nutrients, and other fine sediment. Precipitation events following wildfires can then lead to elevated turbidity, dissolved organic carbon, and suspended solids in surface waters that receive the ash-laden runoff.

A 2021 study by Uzun et al. in Water Research examined two burned California watersheds after the 2015 Rocky and Wragg fires. Comparing post-wildfire water quality in surface streams and lakes, the authors found 67 percent more dissolved organic carbon, 418 percent more dissolved organic nitrogen, and 192 percent more total ammonia in the burned watersheds than in their unburned counterparts for at least two years following the fires. Dissolved organic carbon is not often a human health concern on its own. But many water treatment plants use halogens such as chlorine to disinfect water throughout the distribution line, and when these halogens interact with dissolved organic carbon, they can produce disinfection byproducts that damage chromosomes and living cells and increase risk of cancer and birth defects.

Water quality changes after the 2015 California fires are consistent with data from other burned watersheds around the globe. After the Green Wattle Creek Fire (2019-2020) in Sydney, Australia, and the Fourmile Fire (2010) in Colorado, researchers recorded elevated suspended solids, nutrients, and organic matter in streams and lakes. Changes in water quality were especially notable in Sydney, where the wildfires burned watersheds containing reservoirs that provided 85 percent of greater Sydney’s municipal water. Even when wildfires burn few structures and have minimal effect on municipal water treatment systems, water-related impacts can be costly. Following a 2002 fire, the city of Denver, Colorado, spent $26 million to restore its water collection and distribution system. Similarly, a 2003 fire near Canberra, Australia, cost the city nearly US$40 million to restore water utilities. Post-wildfire expenses vary with the extent of restoration efforts, from removing sediment from reservoirs to updating pipes and physical infrastructure.

The frequency at which municipalities may face increased post-wildfire water treatment costs is alarming. A 2021 study by Colorado State University researchers concluded the combination of watersheds contributing water to the Front Range of the Rocky Mountains (including the Denver metropolitan area) may experience fire-related water quality impairments in 15.7-19.4 percent of future years. But impacts to source water collection systems and pre-treatment water quality are only a piece of the wildfire-water puzzle, as fires affect water distribution systems too.

Extreme fire seasons in recent years have increasingly pushed wildfires into urban spaces, impairing source water quality and affecting the water already within municipal water treatment plants, distribution lines, and water infrastructure. The Camp Fire (California, 2018) and the Marshall Fire (Colorado, 2021) both breached the wildland-urban interface, burning over 18,000 and 1,000 structures, respectively. In November 2018, the Camp Fire ripped across more than 150,000 acres in Butte County, California, killing 85 people and capturing the title of California’s largest and most destructive wildfire to date. In December 2021, a remarkably dry early winter paired with extreme winds led to a 24-hour wildfire in Boulder County, Colorado, that killed two people before heavy snowfall doused it the following day. Both fires have been used as case studies to examine the impacts of urban fires on municipal water supplies and distribution systems.

The Camp Fire burned not just natural carbon sources like trees and shrubs, but also electronics, vehicles, and building materials. Surface water runoff in the months following the fire carried debris and dissolved toxins into receiving streams and lakes, elevating both natural components (like dissolved organic carbon and nitrogen) and toxins (like metals and plastics) in source waters. In addition, in-home water quality testing identified volatile organic compounds, such as benzene, in distribution lines. Research published in AWWA Water Science found benzene levels in distribution systmes exceeding state and federal exposure limits in numerous structures. Do not drink/do not boil water advisories during and after the fire limited consumption of unsafe water, but lingering mistrust plagues the impacted communities.

Figure 1. Satellite imagery depicting the Sagamore neighborhood, Colorado, (a) before, (b) during, and (c) after the Marshall Fire. Fires that burn a combination of structures and ecosystems have complex and varied impacts on drinking water sources and supply lines. Photos from Fischer et al., 2022.

Six months after the Camp Fire, a research team led by Purdue University scientists interviewed 233 households within the Camp Fire burn community regarding perceived post-fire water quality. The vast majority of participants (83 percent) reported uncertainty about water safety, and 85 percent sought alternate (non-municipal) water sources after the wildfire. Water advisories in the months following wildfires can be complex, complicated by sporadic data sampling, with water status oscillating between “safe to drink,” “boil water,” and “do not drink/do not boil.”

Communities impacted by the 2021 Marshall Fire also experienced impaired water quality in distribution lines during and after the fire, but constituents of concern were different than in the Camp Fire. The Marshall Firespread rapidly through communities, burning all thousand structures in a single day and creating gushing holes in the water distribution system. Along with widespread power outages, these holes left water managers hard pressed to keep distribution systems pressurized, jeopardizing access to municipal water to fight the fire. Given the urban setting, the decision was made to run untreated water through the municipal lines for a brief period, leading to municipal boil water advisories.

Climate models suggest that wildfires will gain in frequency, intensity, and size. As a result, water managers are settling into a future in which fire protocols and post-wildfire testing strategies will be the norm. The research conducted following the Marshall and Camp fires, in conjunction with the broader base of wildfire/water quality researchers and research, will help lay the groundwork for future resiliency efforts and community preparedness.

Research Cited
Maria Anna Coniglio, Cristian Fioriglio, and Pasqualina Laganà, “The Bottled Water,” in Non-Intentionally Added Substances in PET-Bottled Mineral Water (Springer, Cham, 2020): 11-28.
Philip E. Dennison et al., “Large Wildfire Trends in the Western United States, 1984-2011,” Geophysical Research Letters 41, no. 8 (2014): 2928-2933.
Erica Fischer et al., The 2021 Marshall Fire, Boulder County, Colorado (GREER Association, 2022).
Benjamin M. Gannon et al., “System Analysis of Wildfire‐Water Supply Risk in Colorado, USA with Monte Carlo Wildfire and Rainfall Simulation,” Risk Analysis 42, no. 2 (2022): 406-424.
Alexander Maranghides et al. “A Case Study of the Camp Fire–Fire Progression Timeline Appendix C. Community WUI Fire Hazard Evaluation Framework” (2021).
Winfred Mbinya Manetu and Amon Mwangi Karanja, “Waterborne Disease Risk Factors and Intervention Practices: A Review,” Open Access Library Journal 8, no.5 (2021): 1-11.
Deborah A. Martin, “At the Nexus of Fire, Water and Society,” Philosophical Transactions of the Royal Society B: Biological Sciences 371, no. 1696 (2016): 20150172.
Sheila F. Murphy and Jeffrey H. Writer, “Evaluating the Effects of Wildfire on Stream Processes in a Colorado Front Range Watershed, USA,” Applied Geochemistry 26 (2011): S363-S364.
Jonay Neris et al., “Designing Tools to Predict and Mitigate Impacts on Water Quality Following the Australian 2019/2020 Wildfires: Insights from Sydney’s Largest Water Supply Catchment,” Integrated Environmental Assessment and Management 17, no.6 (2021): 1151-1161.
Tolulope O. Odimayomi et al., “Water Safety Attitudes, Risk Perception, Experiences, and Education for Households Impacted by the 2018 Camp Fire, California,” Natural Hazards 108, no. 1 (2021): 947-975.
Caitlin R. Proctor et al. “Wildfire Caused Widespread Drinking Water Distribution Network Contamination,” AWWA Water Science 2, no.4 (2020): e1183.
Julien Ruffault et al., “Increased Likelihood of Heat-Induced Large Wildfires in the Mediterranean Basin,” Scientific Reports 10, no.1 (2020): 1-9.
Ge Shi et al., “Rapid Warming has Resulted in More Wildfires in Northeastern Australia,” Science of the Total Environment 771 (2021): 144888.
Habibullah Uzun et al., “Two Years of Post-Wildfire Impacts on Dissolved Organic Matter, Nitrogen, and Precursors of Disinfection By-products in California Stream Waters,” Water Research 181 (2020): 115891.
Daoping Wang et al., “Economic Footprint of California Wildfires in 2018,” Nature Sustainability 4, no.3 (2021): 252-260.

The post Water Quality Impacts Under The Worsening Wildfire Regime appeared first on Energy Innovation: Policy and Technology.

Wildfires are increasing in intensity, frequency, and size, decimating ecosystems and devastating communities. As worries about the impacts of wildfires grow, researchers are ramping up efforts to understand wildfires’ water quality repercussions. Studies conducted following the Marshall and Camp fires will help lay the groundwork for future water resiliency efforts and community preparedness.
The post Water Quality Impacts Under The Worsening Wildfire Regime appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

By Olivia Ashmoore

Energy Innovation Policy and Technology LLC® has published updates to the Mexico and India Energy Policy Simulator (EPS) models and launched a new South Korea EPS model. The South Korea EPS was launched on the 3.3.1 platform in partnership with the NEXT Group. The Mexico model was upgraded to the newer 3.3.1 EPS platform to enable forecasting changes in jobs, gross domestic product (GDP), and public health impacts. Data for the India EPS model was updated to account for slower long-term GDP growth associated with the impacts from the COVID-19 pandemic.

South Korea EPS Model Launch

The South Korea-based NEXT Group and Energy Innovation® jointly developed South Korea’s first national-level EPS. South Korea is the world’s 12th-largest annual greenhouse gas (GHG) emitter, contributing approximately 715 million metric tons carbon dioxide equivalent (CO2e) in 2020.

The South Korea EPS model features a Business-As-Usual (BAU) Scenario that shows a 14 percent increase in economy-wide emissions by 2050 absent any additional policy action. Alternatively, an Example Decarbonization Scenario shows additional climate policies can meet the South Korea’s ambitious Nationally Determined Contribution (NDC) goals of reducing emissions 40 percent below 2018 levels by 2030 and reaching net-zero emissions by 2050. The three most effective policies in the Example Decarbonization Scenario are industrial electrification and hydrogen fuel switching, converting hydrogen production to electrolysis, and no new coal or gas-fired powerplants.

South Korea’s Example Decarbonization Scenario emissions reductions by policy.

Mexico EPS Model Update

The Mexico EPS has been upgraded to the EPS 3.3.1 model platform, which includes new detailed economic outputs and data updates. The updated model can now track cash flows, capital investments, changes in GDP, and employment changes by economic sector. In addition, the 3.3.1 version includes new public health impacts and updated energy consumption data.

The Mexico EPS comes preloaded with a BAU Scenario and an Example Long Term Strategy (LTS) Scenario. The Example LTS Scenario would reduce emissions 50 percent below 2000 levels, create approximately 760,000 jobs in 2050, and would increase GDP about 1 percent in 2050. The most impactful policies are an electric vehicle sales standard, industrial electrification and hydrogen fuel switching, and a clean electricity standard. The Example LTS Scenario would also prevent 7,300 premature deaths and 218,000 asthma attacks in 2050.

Change in jobs by sector in Mexico’s Example LTS Scenario.

India EPS Data Update

The India EPS model was updated to account for slower near-term energy and economic growth resulting from the COVID-19 pandemic, and also includes an updated GDP forecast from the India Energy Security Scenarios. The India EPS includes a BAU Scenario and two policy scenarios—the Long-term Decarbonization Scenario and the Nationally Determined Contribution-Sustainable Development Goals Linkages Scenario—that show emissions reductions compared to the BAU forecast.

India’s BAU, Long-term Decarbonization, and NDC-SDG Linkages Scenarios.

All these features and updates are now available online. The EPS Video Series provides an introduction to the model’s capabilities, and users can explore the tool using the EPS web interface.

Subscribe to Modeling and Analysis email updates

* indicates required

The post Energy Innovation® Launches South Korea EPS model, Updates India And Mexico EPS models appeared first on Energy Innovation: Policy and Technology.

Energy Innovation Policy and Technology LLC® has launched a new South Korea EPS model in partnership with the NEXT Group and updated the Mexico and India Energy Policy Simulator (EPS) models. The Mexico EPS was upgraded to the 3.3.1 platform to enable forecasting changes in jobs, gross domestic product, and public health impacts, while India EPS data was updated to account for slower GDP growth resulting from the COVID-19 pandemic.
The post Energy Innovation® Launches South Korea EPS model, Updates India And Mexico EPS models appeared first on Energy Innovation: Policy and Technology.[#item_full_content]

Introducing What Does? Series
Introducing What Does? Series

Being fresh out of college or still in college with aspirations and ambition to get into tech companies, you might have heard someone say “I am a Business Analyst “ oh yah! “I am a Product Manager” oh yeah “I am a frontend Developer” and “I am a DB Engineer” and “I am a Quality Analyst” etc., etc.,

Did you ever felt overwhelmed and intrigued with all these terms and wondered “what does” these people with these kinds of titles do day to day in their work. While everyone’s end goal is the same in every organization each of these roles plays a key role in every step of the progress.


Just to give you a sneak peek of what all these roles and titles are and what is involved in them, we are starting a new series called “What Does!”, where you gone hear from the experts in these individual roles from different organizations giving you a brief intro of how their day-to-day work looks like.

Stay tuned to Hirebucket!

Hirebucket

FREE
VIEW